地面站终端 App
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1163 lines
36 KiB

/****************************************************************************
*
* (c) 2009-2016 QGROUNDCONTROL PROJECT <http://www.qgroundcontrol.org>
*
* QGroundControl is licensed according to the terms in the file
* COPYING.md in the root of the source code directory.
*
****************************************************************************/
/**
* @file QGCXPlaneLink.cc
* Implementation of X-Plane interface
* @author Lorenz Meier <lm@qgroundcontrol.org>
*
*/
#include <QTimer>
#include <QList>
#include <QDebug>
#include <QMutexLocker>
#include <QNetworkInterface>
#include <QHostInfo>
#include <iostream>
#include <Eigen/Eigen>
#include "QGCXPlaneLink.h"
#include "QGC.h"
#include "UAS.h"
#include "UASInterface.h"
#include "QGCMessageBox.h"
QGCXPlaneLink::QGCXPlaneLink(Vehicle* vehicle, QString remoteHost, QHostAddress localHost, quint16 localPort) :
_vehicle(vehicle),
13 years ago
remoteHost(QHostAddress("127.0.0.1")),
remotePort(49000),
socket(NULL),
process(NULL),
terraSync(NULL),
barometerOffsetkPa(-8.0f),
airframeID(QGCXPlaneLink::AIRFRAME_UNKNOWN),
xPlaneConnected(false),
xPlaneVersion(0),
simUpdateLast(QGC::groundTimeMilliseconds()),
simUpdateFirst(0),
simUpdateLastText(QGC::groundTimeMilliseconds()),
simUpdateLastGroundTruth(QGC::groundTimeMilliseconds()),
simUpdateHz(0),
_sensorHilEnabled(true),
_useHilActuatorControls(true),
_should_exit(false)
{
// We're doing it wrong - because the Qt folks got the API wrong:
// http://blog.qt.digia.com/blog/2010/06/17/youre-doing-it-wrong/
moveToThread(this);
setTerminationEnabled(false);
this->localHost = localHost;
this->localPort = localPort/*+mav->getUASID()*/;
connectState = false;
this->name = tr("X-Plane Link (localPort:%1)").arg(localPort);
setRemoteHost(remoteHost);
loadSettings();
}
QGCXPlaneLink::~QGCXPlaneLink()
{
storeSettings();
// Tell the thread to exit
_should_exit = true;
if (socket) {
socket->close();
socket->deleteLater();
socket = NULL;
}
}
void QGCXPlaneLink::loadSettings()
{
// Load defaults from settings
QSettings settings;
settings.beginGroup("QGC_XPLANE_LINK");
setRemoteHost(settings.value("REMOTE_HOST", QString("%1:%2").arg(remoteHost.toString()).arg(remotePort)).toString());
13 years ago
setVersion(settings.value("XPLANE_VERSION", 10).toInt());
13 years ago
selectAirframe(settings.value("AIRFRAME", "default").toString());
_sensorHilEnabled = settings.value("SENSOR_HIL", _sensorHilEnabled).toBool();
_useHilActuatorControls = settings.value("ACTUATOR_HIL", _useHilActuatorControls).toBool();
settings.endGroup();
}
void QGCXPlaneLink::storeSettings()
{
// Store settings
QSettings settings;
settings.beginGroup("QGC_XPLANE_LINK");
13 years ago
settings.setValue("REMOTE_HOST", QString("%1:%2").arg(remoteHost.toString()).arg(remotePort));
settings.setValue("XPLANE_VERSION", xPlaneVersion);
settings.setValue("AIRFRAME", airframeName);
settings.setValue("SENSOR_HIL", _sensorHilEnabled);
settings.setValue("ACTUATOR_HIL", _useHilActuatorControls);
settings.endGroup();
}
void QGCXPlaneLink::setVersion(const QString& version)
{
unsigned int oldVersion = xPlaneVersion;
if (version.contains("9"))
{
xPlaneVersion = 9;
}
else if (version.contains("10"))
{
xPlaneVersion = 10;
}
else if (version.contains("11"))
{
xPlaneVersion = 11;
}
else if (version.contains("12"))
{
xPlaneVersion = 12;
}
if (oldVersion != xPlaneVersion)
{
emit versionChanged(QString("X-Plane %1").arg(xPlaneVersion));
}
}
13 years ago
void QGCXPlaneLink::setVersion(unsigned int version)
{
bool changed = (xPlaneVersion != version);
xPlaneVersion = version;
if (changed) emit versionChanged(QString("X-Plane %1").arg(xPlaneVersion));
}
void QGCXPlaneLink::enableHilActuatorControls(bool enable)
{
if (enable != _useHilActuatorControls) {
_useHilActuatorControls = enable;
}
/* Only use override for new message and specific airframes */
MAV_TYPE type = _vehicle->vehicleType();
float value = 0.0f;
if (type == MAV_TYPE_VTOL_RESERVED2) {
value = (enable ? 1.0f : 0.0f);
}
sendDataRef("sim/operation/override/override_control_surfaces", value);
emit useHilActuatorControlsChanged(enable);
}
/**
* @brief Runs the thread
*
**/
void QGCXPlaneLink::run()
{
if (!_vehicle) {
emit statusMessage("No MAV present");
return;
}
if (connectState) {
emit statusMessage("Already connected");
return;
}
socket = new QUdpSocket(this);
socket->moveToThread(this);
connectState = socket->bind(localHost, localPort, QAbstractSocket::ReuseAddressHint);
if (!connectState) {
emit statusMessage("Binding socket failed!");
socket->deleteLater();
socket = NULL;
return;
}
emit statusMessage(tr("Waiting for XPlane.."));
QObject::connect(socket, &QUdpSocket::readyRead, this, &QGCXPlaneLink::readBytes);
connect(_vehicle->uas(), &UAS::hilControlsChanged, this, &QGCXPlaneLink::updateControls, Qt::QueuedConnection);
connect(_vehicle, &Vehicle::hilActuatorControlsChanged, this, &QGCXPlaneLink::updateActuatorControls, Qt::QueuedConnection);
connect(this, &QGCXPlaneLink::hilGroundTruthChanged, _vehicle->uas(), &UAS::sendHilGroundTruth, Qt::QueuedConnection);
connect(this, &QGCXPlaneLink::hilStateChanged, _vehicle->uas(), &UAS::sendHilState, Qt::QueuedConnection);
connect(this, &QGCXPlaneLink::sensorHilGpsChanged, _vehicle->uas(), &UAS::sendHilGps, Qt::QueuedConnection);
connect(this, &QGCXPlaneLink::sensorHilRawImuChanged, _vehicle->uas(), &UAS::sendHilSensors, Qt::QueuedConnection);
_vehicle->uas()->startHil();
#pragma pack(push, 1)
struct iset_struct
{
char b[5];
int index; // (0->20 in the list below)
char str_ipad_them[16];
char str_port_them[6];
char padding[2];
int use_ip;
} ip; // to use this option, 0 not to.
#pragma pack(pop)
ip.b[0] = 'I';
ip.b[1] = 'S';
ip.b[2] = 'E';
ip.b[3] = 'T';
ip.b[4] = '0';
QList<QHostAddress> hostAddresses = QNetworkInterface::allAddresses();
QString localAddrStr;
QString localPortStr = QString("%1").arg(localPort);
for (int i = 0; i < hostAddresses.size(); i++)
{
// Exclude loopback IPv4 and all IPv6 addresses
if (hostAddresses.at(i) != QHostAddress("127.0.0.1") && !hostAddresses.at(i).toString().contains(":"))
{
localAddrStr = hostAddresses.at(i).toString();
break;
}
}
ip.index = 0;
strncpy(ip.str_ipad_them, localAddrStr.toLatin1(), qMin((int)sizeof(ip.str_ipad_them), 16));
strncpy(ip.str_port_them, localPortStr.toLatin1(), qMin((int)sizeof(ip.str_port_them), 6));
ip.use_ip = 1;
writeBytesSafe((const char*)&ip, sizeof(ip));
/* Call function which makes sure individual control override is enabled/disabled */
enableHilActuatorControls(_useHilActuatorControls);
_should_exit = false;
while(!_should_exit) {
QCoreApplication::processEvents();
QGC::SLEEP::msleep(5);
}
disconnect(_vehicle->uas(), &UAS::hilControlsChanged, this, &QGCXPlaneLink::updateControls);
disconnect(this, &QGCXPlaneLink::hilGroundTruthChanged, _vehicle->uas(), &UAS::sendHilGroundTruth);
disconnect(this, &QGCXPlaneLink::hilStateChanged, _vehicle->uas(), &UAS::sendHilState);
disconnect(this, &QGCXPlaneLink::sensorHilGpsChanged, _vehicle->uas(), &UAS::sendHilGps);
disconnect(this, &QGCXPlaneLink::sensorHilRawImuChanged, _vehicle->uas(), &UAS::sendHilSensors);
connectState = false;
disconnect(socket, &QUdpSocket::readyRead, this, &QGCXPlaneLink::readBytes);
socket->close();
socket->deleteLater();
socket = NULL;
emit simulationDisconnected();
emit simulationConnected(false);
}
void QGCXPlaneLink::setPort(int localPort)
{
this->localPort = localPort;
disconnectSimulation();
connectSimulation();
}
void QGCXPlaneLink::processError(QProcess::ProcessError err)
{
QString msg;
switch(err) {
case QProcess::FailedToStart:
msg = tr("X-Plane Failed to start. Please check if the path and command is correct");
break;
case QProcess::Crashed:
msg = tr("X-Plane crashed. This is an X-Plane-related problem, check for X-Plane upgrade.");
break;
case QProcess::Timedout:
msg = tr("X-Plane start timed out. Please check if the path and command is correct");
break;
case QProcess::ReadError:
case QProcess::WriteError:
msg = tr("Could not communicate with X-Plane. Please check if the path and command are correct");
break;
case QProcess::UnknownError:
default:
msg = tr("X-Plane error occurred. Please check if the path and command is correct.");
break;
}
QGCMessageBox::critical(tr("X-Plane HIL"), msg);
}
QString QGCXPlaneLink::getRemoteHost()
{
13 years ago
return QString("%1:%2").arg(remoteHost.toString()).arg(remotePort);
}
/**
* @param newHost Hostname in standard formatting, e.g. localhost:14551 or 192.168.1.1:14551
*/
void QGCXPlaneLink::setRemoteHost(const QString& newHost)
{
13 years ago
if (newHost.length() == 0)
return;
if (newHost.contains(":"))
{
QHostInfo info = QHostInfo::fromName(newHost.split(":").first());
if (info.error() == QHostInfo::NoError)
{
// Add newHost
QList<QHostAddress> newHostAddresses = info.addresses();
QHostAddress address;
for (int i = 0; i < newHostAddresses.size(); i++)
{
// Exclude loopback IPv4 and all IPv6 addresses
if (!newHostAddresses.at(i).toString().contains(":"))
{
address = newHostAddresses.at(i);
}
}
remoteHost = address;
// Set localPort according to user input
remotePort = newHost.split(":").last().toInt();
}
}
else
{
QHostInfo info = QHostInfo::fromName(newHost);
if (info.error() == QHostInfo::NoError)
{
// Add newHost
remoteHost = info.addresses().first();
13 years ago
if (remotePort == 0) remotePort = 49000;
}
}
if (isConnected())
{
disconnectSimulation();
connectSimulation();
}
emit remoteChanged(QString("%1:%2").arg(remoteHost.toString()).arg(remotePort));
}
void QGCXPlaneLink::updateControls(quint64 time, float rollAilerons, float pitchElevator, float yawRudder, float throttle, quint8 systemMode, quint8 navMode)
{
/* Only use HIL_CONTROL when the checkbox is unchecked */
if (_useHilActuatorControls) {
//qDebug() << "received HIL_CONTROL but not using it";
return;
}
#pragma pack(push, 1)
struct payload {
char b[5];
int index;
float f[8];
} p;
#pragma pack(pop)
p.b[0] = 'D';
p.b[1] = 'A';
p.b[2] = 'T';
p.b[3] = 'A';
p.b[4] = '\0';
Q_UNUSED(time);
Q_UNUSED(systemMode);
Q_UNUSED(navMode);
if (_vehicle->vehicleType() == MAV_TYPE_QUADROTOR
|| _vehicle->vehicleType() == MAV_TYPE_HEXAROTOR
|| _vehicle->vehicleType() == MAV_TYPE_OCTOROTOR)
{
qDebug() << "MAV_TYPE_QUADROTOR";
// Individual effort will be provided directly to the actuators on Xplane quadrotor.
p.f[0] = yawRudder;
p.f[1] = rollAilerons;
p.f[2] = throttle;
p.f[3] = pitchElevator;
// Direct throttle control
p.index = 25;
writeBytesSafe((const char*)&p, sizeof(p));
}
else
{
// direct pass-through, normal fixed-wing.
p.f[0] = -pitchElevator;
p.f[1] = rollAilerons;
p.f[2] = yawRudder;
// Ail / Elevon / Rudder
// Send to group 12
p.index = 12;
writeBytesSafe((const char*)&p, sizeof(p));
// Send to group 8, which equals manual controls
p.index = 8;
writeBytesSafe((const char*)&p, sizeof(p));
// Send throttle to all four motors
p.index = 25;
memset(p.f, 0, sizeof(p.f));
p.f[0] = throttle;
p.f[1] = throttle;
p.f[2] = throttle;
p.f[3] = throttle;
writeBytesSafe((const char*)&p, sizeof(p));
}
}
void QGCXPlaneLink::updateActuatorControls(quint64 time, quint64 flags, float ctl_0, float ctl_1, float ctl_2, float ctl_3, float ctl_4, float ctl_5, float ctl_6, float ctl_7, float ctl_8, float ctl_9, float ctl_10, float ctl_11, float ctl_12, float ctl_13, float ctl_14, float ctl_15, quint8 mode)
{
if (!_useHilActuatorControls) {
//qDebug() << "received HIL_ACTUATOR_CONTROLS but not using it";
return;
}
Q_UNUSED(time);
Q_UNUSED(flags);
Q_UNUSED(mode);
Q_UNUSED(ctl_12);
Q_UNUSED(ctl_13);
Q_UNUSED(ctl_14);
Q_UNUSED(ctl_15);
#pragma pack(push, 1)
struct payload {
char b[5];
int index;
float f[8];
} p;
#pragma pack(pop)
p.b[0] = 'D';
p.b[1] = 'A';
p.b[2] = 'T';
p.b[3] = 'A';
p.b[4] = '\0';
/* Initialize with zeroes */
memset(p.f, 0, sizeof(p.f));
switch (_vehicle->vehicleType()) {
case MAV_TYPE_QUADROTOR:
case MAV_TYPE_HEXAROTOR:
case MAV_TYPE_OCTOROTOR:
{
p.f[0] = ctl_0; ///< X-Plane Engine 1
p.f[1] = ctl_1; ///< X-Plane Engine 2
p.f[2] = ctl_2; ///< X-Plane Engine 3
p.f[3] = ctl_3; ///< X-Plane Engine 4
p.f[4] = ctl_4; ///< X-Plane Engine 5
p.f[5] = ctl_5; ///< X-Plane Engine 6
p.f[6] = ctl_6; ///< X-Plane Engine 7
p.f[7] = ctl_7; ///< X-Plane Engine 8
/* Direct throttle control */
p.index = 25;
writeBytesSafe((const char*)&p, sizeof(p));
break;
}
case MAV_TYPE_VTOL_RESERVED2:
{
/**
* Tailsitter with four control flaps and eight motors.
*/
/* Throttle channels */
p.f[0] = ctl_0;
p.f[1] = ctl_1;
p.f[2] = ctl_2;
p.f[3] = ctl_3;
p.f[4] = ctl_4;
p.f[5] = ctl_5;
p.f[6] = ctl_6;
p.f[7] = ctl_7;
p.index = 25;
writeBytesSafe((const char*)&p, sizeof(p));
/* Control individual actuators */
float max_surface_deflection = 30.0f; // Degrees
sendDataRef("sim/flightmodel/controls/wing1l_ail1def", ctl_8 * max_surface_deflection);
sendDataRef("sim/flightmodel/controls/wing1r_ail1def", ctl_9 * max_surface_deflection);
sendDataRef("sim/flightmodel/controls/wing2l_ail1def", ctl_10 * max_surface_deflection);
sendDataRef("sim/flightmodel/controls/wing2r_ail1def", ctl_11 * max_surface_deflection);
sendDataRef("sim/flightmodel/controls/wing1l_ail2def", ctl_12 * max_surface_deflection);
sendDataRef("sim/flightmodel/controls/wing1r_ail2def", ctl_13 * max_surface_deflection);
sendDataRef("sim/flightmodel/controls/wing2l_ail2def", ctl_14 * max_surface_deflection);
sendDataRef("sim/flightmodel/controls/wing2r_ail2def", ctl_15 * max_surface_deflection);
break;
}
default:
{
/* direct pass-through, normal fixed-wing. */
p.f[0] = -ctl_1; ///< X-Plane Elevator
p.f[1] = ctl_0; ///< X-Plane Aileron
p.f[2] = ctl_2; ///< X-Plane Rudder
/* Send to group 8, which equals manual controls */
p.index = 8;
writeBytesSafe((const char*)&p, sizeof(p));
/* Send throttle to all eight motors */
p.index = 25;
p.f[0] = ctl_3;
p.f[1] = ctl_3;
p.f[2] = ctl_3;
p.f[3] = ctl_3;
p.f[4] = ctl_3;
p.f[5] = ctl_3;
p.f[6] = ctl_3;
p.f[7] = ctl_3;
writeBytesSafe((const char*)&p, sizeof(p));
break;
}
}
}
Eigen::Matrix3f euler_to_wRo(double yaw, double pitch, double roll) {
double c__ = cos(yaw);
double _c_ = cos(pitch);
double __c = cos(roll);
double s__ = sin(yaw);
double _s_ = sin(pitch);
double __s = sin(roll);
double cc_ = c__ * _c_;
double cs_ = c__ * _s_;
double sc_ = s__ * _c_;
double ss_ = s__ * _s_;
double c_c = c__ * __c;
double c_s = c__ * __s;
double s_c = s__ * __c;
double s_s = s__ * __s;
double _cc = _c_ * __c;
double _cs = _c_ * __s;
double csc = cs_ * __c;
double css = cs_ * __s;
double ssc = ss_ * __c;
double sss = ss_ * __s;
Eigen::Matrix3f wRo;
wRo <<
cc_ , css-s_c, csc+s_s,
sc_ , sss+c_c, ssc-c_s,
-_s_ , _cs, _cc;
return wRo;
}
void QGCXPlaneLink::_writeBytes(const QByteArray data)
{
if (data.isEmpty()) return;
// If socket exists and is connected, transmit the data
if (socket && connectState)
{
socket->writeDatagram(data, remoteHost, remotePort);
}
}
/**
* @brief Read all pending packets from the interface.
**/
void QGCXPlaneLink::readBytes()
{
// Only emit updates on attitude message
bool emitUpdate = false;
quint16 fields_changed = 0;
const qint64 maxLength = 65536;
char data[maxLength];
QHostAddress sender;
quint16 senderPort;
unsigned int s = socket->pendingDatagramSize();
if (s > maxLength) std::cerr << __FILE__ << __LINE__ << " UDP datagram overflow, allowed to read less bytes than datagram size: " << s << std::endl;
socket->readDatagram(data, maxLength, &sender, &senderPort);
if (s > maxLength) {
std::string headStr = std::string(data, data+5);
std::cerr << __FILE__ << __LINE__ << " UDP datagram header: " << headStr << std::endl;
}
// Calculate the number of data segments a 36 bytes
// XPlane always has 5 bytes header: 'DATA@'
unsigned nsegs = (s-5)/36;
//qDebug() << "XPLANE:" << "LEN:" << s << "segs:" << nsegs;
#pragma pack(push, 1)
struct payload {
int index;
float f[8];
} p;
#pragma pack(pop)
bool oldConnectionState = xPlaneConnected;
if (data[0] == 'D' &&
data[1] == 'A' &&
data[2] == 'T' &&
data[3] == 'A')
{
xPlaneConnected = true;
if (oldConnectionState != xPlaneConnected) {
simUpdateFirst = QGC::groundTimeMilliseconds();
}
for (unsigned i = 0; i < nsegs; i++)
{
// Get index
unsigned ioff = (5+i*36);;
memcpy(&(p), data+ioff, sizeof(p));
if (p.index == 3)
{
float knotsToMetersPerSecond = 0.514444f;
ind_airspeed = p.f[5] * knotsToMetersPerSecond;
true_airspeed = p.f[6] * knotsToMetersPerSecond;
groundspeed = p.f[7] * knotsToMetersPerSecond;
//qDebug() << "SPEEDS:" << "airspeed" << airspeed << "m/s, groundspeed" << groundspeed << "m/s";
}
if (p.index == 4)
{
// WORKAROUND: IF ground speed <<1m/s and altitude-above-ground <1m, do NOT use the X-Plane data, because X-Plane (tested
// with v10.3 and earlier) delivers yacc=0 and zacc=0 when the ground speed is very low, which gives e.g. wrong readings
// before launch when waiting on the runway. This might pose a problem for initial state estimation/calibration.
// Instead, we calculate our own accelerations.
if (fabsf(groundspeed)<0.1f && alt_agl<1.0)
{
// TODO: Add centrip. acceleration to the current static acceleration implementation.
Eigen::Vector3f g(0, 0, -9.80665f);
Eigen::Matrix3f R = euler_to_wRo(yaw, pitch, roll);
Eigen::Vector3f gr = R.transpose().eval() * g;
xacc = gr[0];
yacc = gr[1];
zacc = gr[2];
//qDebug() << "Calculated values" << gr[0] << gr[1] << gr[2];
}
else
{
// Accelerometer readings, directly from X-Plane and including centripetal forces.
const float one_g = 9.80665f;
xacc = p.f[5] * one_g;
yacc = p.f[6] * one_g;
zacc = -p.f[4] * one_g;
//qDebug() << "X-Plane values" << xacc << yacc << zacc;
}
fields_changed |= (1 << 0) | (1 << 1) | (1 << 2);
emitUpdate = true;
}
// atmospheric pressure aircraft for XPlane 9 and 10
else if (p.index == 6)
{
// inHg to hPa (hecto Pascal / millibar)
abs_pressure = p.f[0] * 33.863886666718317f;
temperature = p.f[1];
fields_changed |= (1 << 9) | (1 << 12);
}
// Forward controls from X-Plane to MAV, not very useful
// better: Connect Joystick to QGroundControl
// else if (p.index == 8)
// {
// //qDebug() << "MAN:" << p.f[0] << p.f[3] << p.f[7];
// man_roll = p.f[0];
// man_pitch = p.f[1];
// man_yaw = p.f[2];
// UAS* uas = dynamic_cast<UAS*>(mav);
// if (uas) uas->setManualControlCommands(man_roll, man_pitch, man_yaw, 0.6);
// }
else if ((xPlaneVersion == 10 && p.index == 16) || (xPlaneVersion == 9 && p.index == 17))
{
// Cross checked with XPlane flight
pitchspeed = p.f[0];
rollspeed = p.f[1];
yawspeed = p.f[2];
fields_changed |= (1 << 3) | (1 << 4) | (1 << 5);
emitUpdate = true;
}
else if ((xPlaneVersion == 10 && p.index == 17) || (xPlaneVersion == 9 && p.index == 18))
{
//qDebug() << "HDNG" << "pitch" << p.f[0] << "roll" << p.f[1] << "hding true" << p.f[2] << "hding mag" << p.f[3];
pitch = p.f[0] / 180.0f * M_PI;
roll = p.f[1] / 180.0f * M_PI;
yaw = p.f[2] / 180.0f * M_PI;
// X-Plane expresses yaw as 0..2 PI
if (yaw > M_PI) {
yaw -= 2.0f * static_cast<float>(M_PI);
}
if (yaw < -M_PI) {
yaw += 2.0f * static_cast<float>(M_PI);
}
float yawmag = p.f[3] / 180.0f * M_PI;
if (yawmag > M_PI) {
yawmag -= 2.0f * static_cast<float>(M_PI);
}
if (yawmag < -M_PI) {
yawmag += 2.0f * static_cast<float>(M_PI);
}
// Normal rotation matrix, but since we rotate the
// vector [0.25 0 0.45]', we end up with these relevant
// matrix parts.
xmag = cos(-yawmag) * 0.25f;
ymag = sin(-yawmag) * 0.25f;
zmag = 0.45f;
fields_changed |= (1 << 6) | (1 << 7) | (1 << 8);
double cosPhi = cos(roll);
double sinPhi = sin(roll);
double cosThe = cos(pitch);
double sinThe = sin(pitch);
double cosPsi = cos(0.0);
double sinPsi = sin(0.0);
float dcm[3][3];
dcm[0][0] = cosThe * cosPsi;
dcm[0][1] = -cosPhi * sinPsi + sinPhi * sinThe * cosPsi;
dcm[0][2] = sinPhi * sinPsi + cosPhi * sinThe * cosPsi;
dcm[1][0] = cosThe * sinPsi;
dcm[1][1] = cosPhi * cosPsi + sinPhi * sinThe * sinPsi;
dcm[1][2] = -sinPhi * cosPsi + cosPhi * sinThe * sinPsi;
dcm[2][0] = -sinThe;
dcm[2][1] = sinPhi * cosThe;
dcm[2][2] = cosPhi * cosThe;
Eigen::Matrix3f m = Eigen::Map<Eigen::Matrix3f>((float*)dcm).eval();
Eigen::Vector3f mag(xmag, ymag, zmag);
Eigen::Vector3f magbody = m * mag;
// qDebug() << "yaw mag:" << p.f[2] << "x" << xmag << "y" << ymag;
// qDebug() << "yaw mag in body:" << magbody(0) << magbody(1) << magbody(2);
xmag = magbody(0);
ymag = magbody(1);
zmag = magbody(2);
// Rotate the measurement vector into the body frame using roll and pitch
emitUpdate = true;
}
// else if (p.index == 19)
// {
// qDebug() << "ATT:" << p.f[0] << p.f[1] << p.f[2];
// }
else if (p.index == 20)
{
//qDebug() << "LAT/LON/ALT:" << p.f[0] << p.f[1] << p.f[2];
lat = p.f[0];
lon = p.f[1];
alt = p.f[2] * 0.3048f; // convert feet (MSL) to meters
alt_agl = p.f[3] * 0.3048f; //convert feet (AGL) to meters
}
else if (p.index == 21)
{
vy = p.f[3];
vx = -p.f[5];
// moving 'up' in XPlane is positive, but its negative in NED
// for us.
vz = -p.f[4];
}
else if (p.index == 12)
{
//qDebug() << "AIL/ELEV/RUD" << p.f[0] << p.f[1] << p.f[2];
}
else if (p.index == 25)
{
//qDebug() << "THROTTLE" << p.f[0] << p.f[1] << p.f[2] << p.f[3];
}
else if (p.index == 0)
{
//qDebug() << "STATS" << "fgraphics/s" << p.f[0] << "fsim/s" << p.f[2] << "t frame" << p.f[3] << "cpu load" << p.f[4] << "grnd ratio" << p.f[5] << "filt ratio" << p.f[6];
}
else if (p.index == 11)
{
//qDebug() << "CONTROLS" << "ail" << p.f[0] << "elev" << p.f[1] << "rudder" << p.f[2] << "nwheel" << p.f[3];
}
else
{
//qDebug() << "UNKNOWN #" << p.index << p.f[0] << p.f[1] << p.f[2] << p.f[3];
}
}
}
else if (data[0] == 'S' &&
data[1] == 'N' &&
data[2] == 'A' &&
data[3] == 'P')
{
}
else if (data[0] == 'S' &&
data[1] == 'T' &&
data[2] == 'A' &&
data[3] == 'T')
{
}
else
{
qDebug() << "UNKNOWN PACKET:" << data;
}
// Wait for 0.5s before actually using the data, so that all fields are filled
if (QGC::groundTimeMilliseconds() - simUpdateFirst < 500) {
return;
}
// Send updated state
if (emitUpdate && (QGC::groundTimeMilliseconds() - simUpdateLast) > 2)
{
simUpdateHz = simUpdateHz * 0.9f + 0.1f * (1000.0f / (QGC::groundTimeMilliseconds() - simUpdateLast));
if (QGC::groundTimeMilliseconds() - simUpdateLastText > 2000) {
emit statusMessage(tr("Receiving from XPlane at %1 Hz").arg(static_cast<int>(simUpdateHz)));
// Reset lowpass with current value
simUpdateHz = (1000.0f / (QGC::groundTimeMilliseconds() - simUpdateLast));
// Set state
simUpdateLastText = QGC::groundTimeMilliseconds();
}
simUpdateLast = QGC::groundTimeMilliseconds();
if (_sensorHilEnabled)
{
diff_pressure = (ind_airspeed * ind_airspeed * 1.225f) / 2.0f;
/* tropospheric properties (0-11km) for standard atmosphere */
const double T1 = 15.0 + 273.15; /* temperature at base height in Kelvin */
const double a = -6.5 / 1000; /* temperature gradient in degrees per metre */
const double g = 9.80665; /* gravity constant in m/s/s */
const double R = 287.05; /* ideal gas constant in J/kg/K */
/* current pressure at MSL in kPa */
double p1 = 1013.25 / 10.0;
/* measured pressure in hPa, plus offset to simulate weather effects / offsets */
double p = abs_pressure / 10.0 + barometerOffsetkPa;
/*
* Solve:
*
* / -(aR / g) \
* | (p / p1) . T1 | - T1
* \ /
* h = ------------------------------- + h1
* a
*/
pressure_alt = (((pow((p / p1), (-(a * R) / g))) * T1) - T1) / a;
// set pressure alt to changed
fields_changed |= (1 << 11);
emit sensorHilRawImuChanged(QGC::groundTimeUsecs(), xacc, yacc, zacc, rollspeed, pitchspeed, yawspeed,
xmag, ymag, zmag, abs_pressure, diff_pressure / 100.0, pressure_alt, temperature, fields_changed);
// XXX make these GUI-configurable and add randomness
int gps_fix_type = 3;
float eph = 0.3f;
float epv = 0.6f;
float vel = sqrt(vx*vx + vy*vy + vz*vz);
float cog = atan2(vy, vx);
int satellites = 8;
emit sensorHilGpsChanged(QGC::groundTimeUsecs(), lat, lon, alt, gps_fix_type, eph, epv, vel, vx, vy, vz, cog, satellites);
} else {
emit hilStateChanged(QGC::groundTimeUsecs(), roll, pitch, yaw, rollspeed,
pitchspeed, yawspeed, lat, lon, alt,
vx, vy, vz, ind_airspeed, true_airspeed, xacc, yacc, zacc);
}
// Limit ground truth to 25 Hz
if (QGC::groundTimeMilliseconds() - simUpdateLastGroundTruth > 40) {
emit hilGroundTruthChanged(QGC::groundTimeUsecs(), roll, pitch, yaw, rollspeed,
pitchspeed, yawspeed, lat, lon, alt,
vx, vy, vz, ind_airspeed, true_airspeed, xacc, yacc, zacc);
simUpdateLastGroundTruth = QGC::groundTimeMilliseconds();
}
}
if (!oldConnectionState && xPlaneConnected)
{
emit statusMessage(tr("Receiving from XPlane."));
}
// // Echo data for debugging purposes
// std::cerr << __FILE__ << __LINE__ << "Received datagram:" << std::endl;
// int i;
// for (i=0; i<s; i++)
// {
// unsigned int v=data[i];
// fprintf(stderr,"%02x ", v);
// }
// std::cerr << std::endl;
}
/**
* @brief Get the number of bytes to read.
*
* @return The number of bytes to read
**/
qint64 QGCXPlaneLink::bytesAvailable()
{
return socket->pendingDatagramSize();
}
/**
* @brief Disconnect the connection.
*
* @return True if connection has been disconnected, false if connection couldn't be disconnected.
**/
bool QGCXPlaneLink::disconnectSimulation()
{
if (connectState)
{
_should_exit = true;
} else {
emit simulationDisconnected();
emit simulationConnected(false);
}
return !connectState;
}
void QGCXPlaneLink::selectAirframe(const QString& plane)
{
airframeName = plane;
if (plane.contains("QRO"))
{
if (plane.contains("MK") && airframeID != AIRFRAME_QUAD_X_MK_10INCH_I2C)
{
airframeID = AIRFRAME_QUAD_X_MK_10INCH_I2C;
emit airframeChanged("QRO_X / MK");
}
else if (plane.contains("ARDRONE") && airframeID != AIRFRAME_QUAD_X_ARDRONE)
{
airframeID = AIRFRAME_QUAD_X_ARDRONE;
emit airframeChanged("QRO_X / ARDRONE");
}
else
{
bool changed = (airframeID != AIRFRAME_QUAD_DJI_F450_PWM);
airframeID = AIRFRAME_QUAD_DJI_F450_PWM;
if (changed) emit airframeChanged("QRO_X / DJI-F450 / PWM");
}
}
13 years ago
else
{
bool changed = (airframeID != AIRFRAME_UNKNOWN);
13 years ago
airframeID = AIRFRAME_UNKNOWN;
if (changed) emit airframeChanged("X Plane default");
13 years ago
}
}
void QGCXPlaneLink::setPositionAttitude(double lat, double lon, double alt, double roll, double pitch, double yaw)
{
#pragma pack(push, 1)
struct VEH1_struct
{
char header[5];
quint32 p;
double lat_lon_ele[3];
float psi_the_phi[3];
float gear_flap_vect[3];
} pos;
#pragma pack(pop)
pos.header[0] = 'V';
pos.header[1] = 'E';
pos.header[2] = 'H';
pos.header[3] = '1';
pos.header[4] = '0';
pos.p = 0;
pos.lat_lon_ele[0] = lat;
pos.lat_lon_ele[1] = lon;
pos.lat_lon_ele[2] = alt;
pos.psi_the_phi[0] = roll;
pos.psi_the_phi[1] = pitch;
pos.psi_the_phi[2] = yaw;
pos.gear_flap_vect[0] = 0.0f;
pos.gear_flap_vect[1] = 0.0f;
pos.gear_flap_vect[2] = 0.0f;
writeBytesSafe((const char*)&pos, sizeof(pos));
// pos.header[0] = 'V';
// pos.header[1] = 'E';
// pos.header[2] = 'H';
// pos.header[3] = '1';
// pos.header[4] = '0';
// pos.p = 0;
// pos.lat_lon_ele[0] = -999;
// pos.lat_lon_ele[1] = -999;
// pos.lat_lon_ele[2] = -999;
// pos.psi_the_phi[0] = -999;
// pos.psi_the_phi[1] = -999;
// pos.psi_the_phi[2] = -999;
// pos.gear_flap_vect[0] = -999;
// pos.gear_flap_vect[1] = -999;
// pos.gear_flap_vect[2] = -999;
// writeBytesSafe((const char*)&pos, sizeof(pos));
}
/**
* Sets a random position with an offset of max 1/1000 degree
* and max 100 m altitude
*/
void QGCXPlaneLink::setRandomPosition()
{
// Initialize generator
srand(0);
double offLat = rand() / static_cast<double>(RAND_MAX) / 500.0 + 1.0/500.0;
double offLon = rand() / static_cast<double>(RAND_MAX) / 500.0 + 1.0/500.0;
double offAlt = rand() / static_cast<double>(RAND_MAX) * 200.0 + 100.0;
if (_vehicle->altitudeAMSL()->rawValue().toDouble() + offAlt < 0)
{
offAlt *= -1.0;
}
setPositionAttitude(_vehicle->latitude() + offLat,
_vehicle->longitude() + offLon,
_vehicle->altitudeAMSL()->rawValue().toDouble() + offAlt,
_vehicle->roll()->rawValue().toDouble(),
_vehicle->pitch()->rawValue().toDouble(),
_vehicle->uas()->getYaw());
}
void QGCXPlaneLink::setRandomAttitude()
{
// Initialize generator
srand(0);
double roll = rand() / static_cast<double>(RAND_MAX) * 2.0 - 1.0;
double pitch = rand() / static_cast<double>(RAND_MAX) * 2.0 - 1.0;
double yaw = rand() / static_cast<double>(RAND_MAX) * 2.0 - 1.0;
setPositionAttitude(_vehicle->latitude(),
_vehicle->longitude(),
_vehicle->altitudeAMSL()->rawValue().toDouble(),
roll,
pitch,
yaw);
}
/**
* @brief Connect the connection.
*
* @return True if connection has been established, false if connection couldn't be established.
**/
bool QGCXPlaneLink::connectSimulation()
{
if (connectState) {
qDebug() << "Simulation already active";
} else {
qDebug() << "STARTING X-PLANE LINK, CONNECTING TO" << remoteHost << ":" << remotePort;
// XXX Hack
storeSettings();
start(HighPriority);
}
return true;
}
/**
* @brief Check if connection is active.
*
* @return True if link is connected, false otherwise.
**/
bool QGCXPlaneLink::isConnected()
{
return connectState;
}
QString QGCXPlaneLink::getName()
{
return name;
}
void QGCXPlaneLink::setName(QString name)
{
this->name = name;
// emit nameChanged(this->name);
}
void QGCXPlaneLink::sendDataRef(QString ref, float value)
{
#pragma pack(push, 1)
struct payload {
char b[5];
float value;
char name[500];
} dref;
#pragma pack(pop)
dref.b[0] = 'D';
dref.b[1] = 'R';
dref.b[2] = 'E';
dref.b[3] = 'F';
dref.b[4] = '0';
/* Set value */
dref.value = value;
/* Fill name with zeroes */
memset(dref.name, 0, sizeof(dref.name));
/* Set dref name */
/* Send command */
QByteArray ba = ref.toUtf8();
if (ba.length() > 500) {
return;
}
for (int i = 0; i < ba.length(); i++) {
dref.name[i] = ba.at(i);
}
writeBytesSafe((const char*)&dref, sizeof(dref));
}