地面站终端 App
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

717 lines
34 KiB

/*=====================================================================
QGroundControl Open Source Ground Control Station
(c) 2009 - 2014 QGROUNDCONTROL PROJECT <http://www.qgroundcontrol.org>
This file is part of the QGROUNDCONTROL project
QGROUNDCONTROL is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
QGROUNDCONTROL is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with QGROUNDCONTROL. If not, see <http://www.gnu.org/licenses/>.
======================================================================*/
#include "PX4RCCalibrationTest.h"
#include "UASManager.h"
#include "MockQGCUASParamManager.h"
/// @file
/// @brief QPX4RCCalibration Widget unit test
///
/// @author Don Gagne <don@thegagnes.com>
// This will check for the wizard buttons being enabled of disabled according to the mask you pass in.
// We use a macro instead of a method so that we get better line number reporting on failure.
#define CHK_BUTTONS(mask) \
{ \
if (_nextButton->isEnabled() != !!((mask) & nextButtonMask) || \
_skipButton->isEnabled() != !!((mask) & skipButtonMask) || \
_cancelButton->isEnabled() != !!((mask) & cancelButtonMask) || \
_tryAgainButton->isEnabled() != !!((mask) & tryAgainButtonMask)) { \
qDebug() << _statusLabel->text(); \
} \
QCOMPARE(_nextButton->isEnabled(), !!((mask) & nextButtonMask)); \
QCOMPARE(_skipButton->isEnabled(), !!((mask) & skipButtonMask)); \
QCOMPARE(_cancelButton->isEnabled(), !!((mask) & cancelButtonMask)); \
QCOMPARE(_tryAgainButton->isEnabled(), !!((mask) & tryAgainButtonMask)); \
}
// This allows you to write unit tests which will click the Cancel button the first time through, followed
// by the Next button on the second iteration.
#define NEXT_OR_CANCEL(cancelNum) \
{ \
if (mode == testModeStandalone && tryCancel ## cancelNum) { \
QTest::mouseClick(_cancelButton, Qt::LeftButton); \
QCOMPARE(_calWidget->_rcCalState, PX4RCCalibration::rcCalStateChannelWait); \
tryCancel ## cancelNum = false; \
goto StartOver; \
} else { \
QTest::mouseClick(_nextButton, Qt::LeftButton); \
} \
}
const int PX4RCCalibrationTest::_testMinValue = PX4RCCalibration::_rcCalPWMDefaultMinValue + 10;
const int PX4RCCalibrationTest::_testMaxValue = PX4RCCalibration::_rcCalPWMDefaultMaxValue - 10;
const int PX4RCCalibrationTest::_testTrimValue = PX4RCCalibration::_rcCalPWMDefaultTrimValue + 10;
const int PX4RCCalibrationTest::_testThrottleTrimValue = PX4RCCalibration::_rcCalPWMDefaultMinValue + 10;
const struct PX4RCCalibrationTest::ChannelSettings PX4RCCalibrationTest::_rgChannelSettingsPreValidate[PX4RCCalibrationTest::_availableChannels] = {
//Min Value Max Value Trim Value Reversed MinMaxShown MinValid MaxValid
// Channel 0 : rcCalFunctionRoll
{ PX4RCCalibrationTest::_testMinValue, PX4RCCalibrationTest::_testMaxValue, PX4RCCalibrationTest::_testTrimValue, false, true, true, true },
// Channel 1 : rcCalFunctionPitch
{ PX4RCCalibrationTest::_testMinValue, PX4RCCalibrationTest::_testMaxValue, PX4RCCalibrationTest::_testTrimValue, false, true, true, true },
// Channel 2 : rcCalFunctionYaw
{ PX4RCCalibrationTest::_testMinValue, PX4RCCalibrationTest::_testMaxValue, PX4RCCalibrationTest::_testTrimValue, false, true, true, true },
// Channel 3 : rcCalFunctionThrottle
{ PX4RCCalibrationTest::_testMinValue, PX4RCCalibrationTest::_testMaxValue, PX4RCCalibrationTest::_testThrottleTrimValue, false, true, true, true },
// Channel 4 : rcCalFunctionModeSwitch
{ PX4RCCalibrationTest::_testMinValue, PX4RCCalibrationTest::_testMaxValue, PX4RCCalibration::_rcCalPWMCenterPoint, false, true, true, true },
// Channel 5 : Simulate invalid Min, valid Max
{ PX4RCCalibration::_rcCalPWMCenterPoint, PX4RCCalibration::_rcCalPWMDefaultMaxValue, PX4RCCalibration::_rcCalPWMCenterPoint, false, true, false, true },
// Channels 6-7: Invalid Min/Max, since available channel Min/Max is still shown
{ PX4RCCalibration::_rcCalPWMCenterPoint, PX4RCCalibration::_rcCalPWMCenterPoint, PX4RCCalibration::_rcCalPWMCenterPoint, false, true, false, false },
{ PX4RCCalibration::_rcCalPWMCenterPoint, PX4RCCalibration::_rcCalPWMCenterPoint, PX4RCCalibration::_rcCalPWMCenterPoint, false, true, false, false },
};
const struct PX4RCCalibrationTest::ChannelSettings PX4RCCalibrationTest::_rgChannelSettingsPostValidate[PX4RCCalibration::_chanMax] = {
// Min Value Max Value Trim Value Reversed MinMaxShown MinValid MaxValid
// Channel 0 : rcCalFunctionRoll
{ PX4RCCalibrationTest::_testMinValue, PX4RCCalibrationTest::_testMaxValue, PX4RCCalibrationTest::_testTrimValue, false, true, true, true },
// Channel 1 : rcCalFunctionPitch
{ PX4RCCalibrationTest::_testMinValue, PX4RCCalibrationTest::_testMaxValue, PX4RCCalibrationTest::_testTrimValue, false, true, true, true },
// Channel 2 : rcCalFunctionYaw
{ PX4RCCalibrationTest::_testMinValue, PX4RCCalibrationTest::_testMaxValue, PX4RCCalibrationTest::_testTrimValue, false, true, true, true },
// Channel 3 : rcCalFunctionThrottle
{ PX4RCCalibrationTest::_testMinValue, PX4RCCalibrationTest::_testMaxValue, PX4RCCalibrationTest::_testThrottleTrimValue, false, true, true, true },
// Channel 4 : rcCalFunctionModeSwitch
{ PX4RCCalibrationTest::_testMinValue, PX4RCCalibrationTest::_testMaxValue, PX4RCCalibration::_rcCalPWMCenterPoint, false, true, true, true },
// Channel 5 : Simulate invalid Min, valid Max, validation should switch back to defaults
{ PX4RCCalibration::_rcCalPWMDefaultMinValue, PX4RCCalibration::_rcCalPWMDefaultMaxValue, PX4RCCalibration::_rcCalPWMDefaultTrimValue, false, true, true, true },
// Channels 6-7: Invalid Min/Max, since available channel Min/Max is still shown, validation will set to defaults
{ PX4RCCalibration::_rcCalPWMDefaultMinValue, PX4RCCalibration::_rcCalPWMDefaultMaxValue, PX4RCCalibration::_rcCalPWMDefaultTrimValue, false, true, true, true },
{ PX4RCCalibration::_rcCalPWMDefaultMinValue, PX4RCCalibration::_rcCalPWMDefaultMaxValue, PX4RCCalibration::_rcCalPWMDefaultTrimValue, false, true, true, true },
// We are simulating an 8-channel radio, all other channel should be defaulted
{ PX4RCCalibration::_rcCalPWMDefaultMinValue, PX4RCCalibration::_rcCalPWMDefaultMaxValue, PX4RCCalibration::_rcCalPWMDefaultTrimValue, false, false, false, false },
{ PX4RCCalibration::_rcCalPWMDefaultMinValue, PX4RCCalibration::_rcCalPWMDefaultMaxValue, PX4RCCalibration::_rcCalPWMDefaultTrimValue, false, false, false, false },
{ PX4RCCalibration::_rcCalPWMDefaultMinValue, PX4RCCalibration::_rcCalPWMDefaultMaxValue, PX4RCCalibration::_rcCalPWMDefaultTrimValue, false, false, false, false },
{ PX4RCCalibration::_rcCalPWMDefaultMinValue, PX4RCCalibration::_rcCalPWMDefaultMaxValue, PX4RCCalibration::_rcCalPWMDefaultTrimValue, false, false, false, false },
{ PX4RCCalibration::_rcCalPWMDefaultMinValue, PX4RCCalibration::_rcCalPWMDefaultMaxValue, PX4RCCalibration::_rcCalPWMDefaultTrimValue, false, false, false, false },
{ PX4RCCalibration::_rcCalPWMDefaultMinValue, PX4RCCalibration::_rcCalPWMDefaultMaxValue, PX4RCCalibration::_rcCalPWMDefaultTrimValue, false, false, false, false },
{ PX4RCCalibration::_rcCalPWMDefaultMinValue, PX4RCCalibration::_rcCalPWMDefaultMaxValue, PX4RCCalibration::_rcCalPWMDefaultTrimValue, false, false, false, false },
{ PX4RCCalibration::_rcCalPWMDefaultMinValue, PX4RCCalibration::_rcCalPWMDefaultMaxValue, PX4RCCalibration::_rcCalPWMDefaultTrimValue, false, false, false, false },
{ PX4RCCalibration::_rcCalPWMDefaultMinValue, PX4RCCalibration::_rcCalPWMDefaultMaxValue, PX4RCCalibration::_rcCalPWMDefaultTrimValue, false, false, false, false },
{ PX4RCCalibration::_rcCalPWMDefaultMinValue, PX4RCCalibration::_rcCalPWMDefaultMaxValue, PX4RCCalibration::_rcCalPWMDefaultTrimValue, false, false, false, false },
};
PX4RCCalibrationTest::PX4RCCalibrationTest(void) :
_mockUASManager(NULL),
_calWidget(NULL)
{
}
/// @brief Called one time before any test cases are run.
void PX4RCCalibrationTest::initTestCase(void)
{
// The test case code makes the following assumptions about PX4RCCalibration class internals.
// Make sure these don't change out from under us.
Q_ASSERT(PX4RCCalibration::rcCalFunctionRoll == 0);
Q_ASSERT(PX4RCCalibration::rcCalFunctionPitch == 1);
Q_ASSERT(PX4RCCalibration::rcCalFunctionYaw == 2);
Q_ASSERT(PX4RCCalibration::rcCalFunctionThrottle == 3);
Q_ASSERT(PX4RCCalibration::rcCalFunctionModeSwitch == 4);
// We only set min/max for required channels. Make sure the set of required channels doesn't change out from under us.
for (int chanFunction=0; chanFunction<PX4RCCalibration::rcCalFunctionMax; chanFunction++) {
if (PX4RCCalibration::_rgFunctionInfo[chanFunction].required) {
Q_ASSERT(chanFunction == PX4RCCalibration::rcCalFunctionRoll ||
chanFunction == PX4RCCalibration::rcCalFunctionPitch ||
chanFunction == PX4RCCalibration::rcCalFunctionYaw ||
chanFunction == PX4RCCalibration::rcCalFunctionThrottle ||
chanFunction == PX4RCCalibration::rcCalFunctionModeSwitch);
}
}
}
void PX4RCCalibrationTest::init(void)
{
_mockUASManager = new MockUASManager();
Q_ASSERT(_mockUASManager);
UASManager::setMockUASManager(_mockUASManager);
_mockUAS = new MockUAS();
Q_CHECK_PTR(_mockUAS);
// This will instatiate the widget with no active UAS set
_calWidget = new PX4RCCalibration();
Q_CHECK_PTR(_calWidget);
_mockUASManager->setMockActiveUAS(_mockUAS);
// Get pointers to the push buttons
_cancelButton = _calWidget->findChild<QPushButton*>("rcCalCancel");
_nextButton = _calWidget->findChild<QPushButton*>("rcCalNext");
_skipButton = _calWidget->findChild<QPushButton*>("rcCalSkip");
_tryAgainButton = _calWidget->findChild<QPushButton*>("rcCalTryAgain");
Q_ASSERT(_cancelButton);
Q_ASSERT(_nextButton);
Q_ASSERT(_skipButton);
Q_ASSERT(_tryAgainButton);
_statusLabel = _calWidget->findChild<QLabel*>("rcCalStatus");
Q_ASSERT(_statusLabel);
for (size_t i=0; i<PX4RCCalibration::_chanMax; i++) {
QString radioWidgetName("radio%1Widget");
QString radioWidgetUserName("Radio %1");
RCChannelWidget* radioWidget = _calWidget->findChild<RCChannelWidget*>(radioWidgetName.arg(i+1));
Q_ASSERT(radioWidget);
_rgRadioWidget[i] = radioWidget;
}
}
void PX4RCCalibrationTest::cleanup(void)
{
Q_ASSERT(_mockUAS);
delete _mockUAS;
UASManager::setMockUASManager(NULL);
Q_ASSERT(_mockUASManager);
delete _mockUASManager;
Q_ASSERT(_calWidget);
delete _calWidget;
}
/// @brief Tests for correct behavior when active UAS is set into widget.
void PX4RCCalibrationTest::_setUAS_test(void)
{
// Widget is initialized with UAS, so it should be enabled
QCOMPARE(_calWidget->isEnabled(), true);
// Take away the UAS and widget should disable
_mockUASManager->setMockActiveUAS(NULL);
QCOMPARE(_calWidget->isEnabled(), false);
}
/// @brief Test for correct behavior in determining minimum numbers of channels for fligth.
void PX4RCCalibrationTest::_minRCChannels_test(void)
{
// Next button won't be enabled until we see the minimum number of channels.
for (int i=0; i<PX4RCCalibration::_chanMinimum; i++) {
_mockUAS->emitRemoteControlChannelRawChanged(i, (float)PX4RCCalibration::_rcCalPWMCenterPoint);
// We use _chanCount internally so we should validate it
QCOMPARE(_calWidget->_chanCount, i+1);
// Validate Next button state
if (i == PX4RCCalibration::_chanMinimum - 1) {
// Last channel should trigger enable
CHK_BUTTONS(nextButtonMask);
} else {
// Still less than the minimum channels
CHK_BUTTONS(0);
}
// Only available channels should have enabled widget. A ui update cycle needs to have passed so we wait a little.
QTest::qWait(PX4RCCalibration::_updateInterval * 2);
for (int chanWidget=0; chanWidget<PX4RCCalibration::_chanMax; chanWidget++) {
QCOMPARE(_rgRadioWidget[chanWidget]->isEnabled(), !!(chanWidget <= i));
}
}
}
#if 0
/// @brief Tests that even when not calibrating the channel display is live
void PX4RCCalibrationTest::_liveRC_test(void)
{
for (int i=0; i<PX4RCCalibration::_chanMax; i++) {
_mockUAS->emitRemoteControlChannelRawChanged(i, (float)PX4RCCalibration::_rcCalPWMValidMaxValue);
}
for (int i=0; i<PX4RCCalibration::_chanMax; i++) {
RCChannelWidget* radioWidget = _rgRadioWidget[i];
Q_ASSERT(radioWidget);
QCOMPARE(radioWidget->value(), PX4RCCalibration::_rcCalPWMValidMinValue);
QCOMPARE(radioWidget->max(), PX4RCCalibration::_rcCalPWMValidMaxValue);
}
}
#endif
void PX4RCCalibrationTest::_beginState_worker(enum TestMode mode)
{
bool tryCancel1 = true;
StartOver:
if (mode == testModeStandalone || mode == testModePrerequisite) {
_centerChannels();
_calWidget->_unitTestForceCalState(PX4RCCalibration::rcCalStateBegin);
}
// Next button is always enabled in this state
CHK_BUTTONS(nextButtonMask | cancelButtonMask);
// Click the next button:
// We should now be waiting for movement on a channel to identify the first RC function. The Next button will stay
// disabled until the sticks are moved enough to identify the channel. For required functions the Skip button is
// disabled.
NEXT_OR_CANCEL(1);
QCOMPARE(_calWidget->_rcCalState, PX4RCCalibration::rcCalStateIdentify);
CHK_BUTTONS(cancelButtonMask);
}
void PX4RCCalibrationTest::_beginState_test(void)
{
_beginState_worker(testModeStandalone);
}
void PX4RCCalibrationTest::_identifyState_worker(enum TestMode mode)
{
bool tryCancel1 = true;
StartOver:
if (mode == testModeStandalone || mode == testModePrerequisite)
{
_centerChannels();
_calWidget->_unitTestForceCalState(PX4RCCalibration::rcCalStateIdentify);
}
// Loop over all function idenitfying required channels
for (int i=0; i<PX4RCCalibration::rcCalFunctionMax; i++) {
// If this function is required you can't skip it
bool skipNonRequired = !PX4RCCalibration::_rgFunctionInfo[i].required;
int skipMask = skipNonRequired ? skipButtonMask : 0;
// We should now be waiting for movement on a channel to identify the RC function. The Next button will stay
// disabled until the sticks are moved enough to identify the channel. For required functions the Skip button is
// disabled.
CHK_BUTTONS(cancelButtonMask | skipMask);
// Skip this mapping if allowed
if (skipNonRequired) {
QTest::mouseClick(_skipButton, Qt::LeftButton);
continue;
}
// Move channel less than delta to make sure function is not identified
_mockUAS->emitRemoteControlChannelRawChanged(i, (float)PX4RCCalibration::_rcCalPWMCenterPoint + (PX4RCCalibration::_rcCalMoveDelta - 2.0f));
CHK_BUTTONS(cancelButtonMask | skipMask);
if (i != 0) {
// Try to assign a channel 0 to more than one function. This is not allowed so Next button should not enable.
_mockUAS->emitRemoteControlChannelRawChanged(0, (float)PX4RCCalibration::_rcCalPWMValidMinValue);
_mockUAS->emitRemoteControlChannelRawChanged(0, (float)PX4RCCalibration::_rcCalPWMValidMaxValue);
CHK_BUTTONS(cancelButtonMask | skipMask);
}
if (tryCancel1) {
NEXT_OR_CANCEL(1);
}
// Move channel larger than delta to identify channel. We should now be sitting in a found state.
_mockUAS->emitRemoteControlChannelRawChanged(i, (float)PX4RCCalibration::_rcCalPWMCenterPoint + (PX4RCCalibration::_rcCalMoveDelta + 2.0f));
CHK_BUTTONS(cancelButtonMask | tryAgainButtonMask | nextButtonMask);
NEXT_OR_CANCEL(1);
}
// We should now be waiting for min/max values.
QCOMPARE(_calWidget->_rcCalState, PX4RCCalibration::rcCalStateMinMax);
CHK_BUTTONS(nextButtonMask | cancelButtonMask);
if (mode == testModeStandalone) {
_calWidget->_writeCalibration(false /* !trimsOnly */);
_validateParameters(validateMappingMask);
}
}
void PX4RCCalibrationTest::_identifyState_test(void)
{
_identifyState_worker(testModeStandalone);
}
void PX4RCCalibrationTest::_minMaxState_worker(enum TestMode mode)
{
bool tryCancel1 = true;
StartOver:
if (mode == testModeStandalone || mode == testModePrerequisite) {
// The Min/Max calibration updates the radio channel ui widgets with the min/max values as you move the sticks.
// In order for the roll/pitch/yaw/throttle radio channel ui widgets to be updated correctly those functions
// must be alread mapped to a channel. So we have to run the _identifyState_test first to set up the internal
// state correctly.
_identifyState_worker(testModePrerequisite);
_centerChannels();
_calWidget->_unitTestForceCalState(PX4RCCalibration::rcCalStateMinMax);
// We should now be waiting for min/max values.
CHK_BUTTONS(nextButtonMask | cancelButtonMask);
}
// Before we start sending rc values the widgets should all have min/max as invalid
for (int chan=0; chan<PX4RCCalibration::_chanMax; chan++) {
QCOMPARE(_rgRadioWidget[chan]->isMinValid(), false);
QCOMPARE(_rgRadioWidget[chan]->isMaxValid(), false);
}
// Try setting a min/max value that is below the threshold to make sure min/max doesn't go valid
_mockUAS->emitRemoteControlChannelRawChanged(0, (float)(PX4RCCalibration::_rcCalPWMValidMinValue + 1));
_mockUAS->emitRemoteControlChannelRawChanged(0, (float)(PX4RCCalibration::_rcCalPWMValidMaxValue - 1));
QCOMPARE(_rgRadioWidget[0]->isMinValid(), false);
QCOMPARE(_rgRadioWidget[0]->isMaxValid(), false);
// Send min/max values
for (int chan=0; chan<_minMaxChannels; chan++) {
// Send Min/Max
_mockUAS->emitRemoteControlChannelRawChanged(chan, (float)_rgChannelSettingsPreValidate[chan].rcMin);
_mockUAS->emitRemoteControlChannelRawChanged(chan, (float)_rgChannelSettingsPreValidate[chan].rcMax);
}
_validateWidgets(validateMinMaxMask, _rgChannelSettingsPreValidate);
// Make sure throttle is at min
_mockUAS->emitRemoteControlChannelRawChanged(PX4RCCalibration::rcCalFunctionThrottle, (float)PX4RCCalibration::_rcCalPWMValidMinValue);
// Click the next button: We should now be waiting for center throttle in prep for inversion detection.
// Throttle channel is at minimum so Next button should be disabled.
NEXT_OR_CANCEL(1);
QCOMPARE(_calWidget->_rcCalState, PX4RCCalibration::rcCalStateCenterThrottle);
CHK_BUTTONS(cancelButtonMask);
if (mode == testModeStandalone) {
_calWidget->_writeCalibration(false /* !trimsOnly */);
_validateParameters(validateMinMaxMask);
}
}
void PX4RCCalibrationTest::_minMaxState_test(void)
{
_minMaxState_worker(testModeStandalone);
}
void PX4RCCalibrationTest::_centerThrottleState_worker(enum TestMode mode)
{
bool tryCancel1 = true;
StartOver:
if (mode == testModeStandalone || mode == testModePrerequisite) {
// In order to perform the center throttle state test the throttle channel has to have been identified.
// So we have to run the _identifyState_test first to set up the internal state correctly.
_identifyState_worker(testModePrerequisite);
_centerChannels();
_mockUAS->emitRemoteControlChannelRawChanged(PX4RCCalibration::rcCalFunctionThrottle, (float)PX4RCCalibration::_rcCalPWMValidMinValue);
_calWidget->_unitTestForceCalState(PX4RCCalibration::rcCalStateCenterThrottle);
// We should now be waiting for center throttle in prep for inversion detection.
// Throttle channel is at minimum so Next button should be disabled.
CHK_BUTTONS(cancelButtonMask);
}
// Move the throttle to just below rough center. Next should still be disabled
_mockUAS->emitRemoteControlChannelRawChanged(PX4RCCalibration::rcCalFunctionThrottle, PX4RCCalibration::_rcCalPWMCenterPoint - PX4RCCalibration::_rcCalRoughCenterDelta - 1);
CHK_BUTTONS(cancelButtonMask);
// Center the throttle and make sure Next button gets enabled
_mockUAS->emitRemoteControlChannelRawChanged(PX4RCCalibration::rcCalFunctionThrottle, PX4RCCalibration::_rcCalPWMCenterPoint);
CHK_BUTTONS(cancelButtonMask | nextButtonMask);
// Click the next button which should take us to our first channel inversion test. The Next button will stay disabled until
// the stick for the specified channel is moved down.
NEXT_OR_CANCEL(1);
QCOMPARE(_calWidget->_rcCalState, PX4RCCalibration::rcCalStateDetectInversion);
CHK_BUTTONS(cancelButtonMask);
}
void PX4RCCalibrationTest::_centerThrottleState_test(void)
{
_centerThrottleState_worker(testModeStandalone);
}
void PX4RCCalibrationTest::_detectInversionState_worker(enum TestMode mode)
{
bool tryCancel1 = true;
bool tryCancel2 = true;
StartOver:
if (mode == testModeStandalone || mode == testModePrerequisite) {
// In order to perform the detect inversion test the roll/pitch/yaw/throttle functions must be mapped to a channel.
// So we have to run the _identifyState_test first to set up the internal state correctly.
_identifyState_worker(testModePrerequisite);
_centerChannels();
_calWidget->_unitTestForceCalState(PX4RCCalibration::rcCalStateDetectInversion);
// We should now be at the first channel inversion test. The Next button will stay disabled until the stick for the specified
// channel is moved in the appropriate direction.
CHK_BUTTONS(cancelButtonMask);
}
// Loop over Attitude Control Functions (roll/yaw/pitch/throttle) to detect inversion
for (int chanFunction=PX4RCCalibration::rcCalFunctionFirstAttitudeFunction; chanFunction<=PX4RCCalibration::rcCalFunctionLastAttitudeFunction; chanFunction++) {
if (chanFunction != 0) {
// Click next to move to next inversion to identify
NEXT_OR_CANCEL(1);
CHK_BUTTONS(cancelButtonMask);
}
// Move all channels except for the one we are trying to detect to min and max value to make sure there is no effect.
for (int chan=0; chan<_availableChannels; chan++) {
if (chanFunction != chan) {
_mockUAS->emitRemoteControlChannelRawChanged(chan, (float)PX4RCCalibration::_rcCalPWMCenterPoint + (PX4RCCalibration::_rcCalMoveDelta + 2.0f));
_mockUAS->emitRemoteControlChannelRawChanged(chan, (float)PX4RCCalibration::_rcCalPWMCenterPoint - (PX4RCCalibration::_rcCalMoveDelta + 2.0f));
CHK_BUTTONS(cancelButtonMask);
// Make sure to re-center for next inversion detect
_mockUAS->emitRemoteControlChannelRawChanged(chan, (float)PX4RCCalibration::_rcCalPWMCenterPoint);
}
}
// Move the channel we are detecting inversion on to the min value which should indicate no inversion.
// This should put us in the found state and enable the Next button.
_mockUAS->emitRemoteControlChannelRawChanged(chanFunction, (float)PX4RCCalibration::_rcCalPWMCenterPoint - (PX4RCCalibration::_rcCalMoveDelta + 2.0f));
CHK_BUTTONS(cancelButtonMask | tryAgainButtonMask | nextButtonMask);
}
// Click the next button: We should now be waiting for low throttle in prep for trim detection.
// Throttle channel is at minimum so Next button should be disabled.
_centerChannels();
NEXT_OR_CANCEL(2);
QCOMPARE(_calWidget->_rcCalState, PX4RCCalibration::rcCalStateTrims);
CHK_BUTTONS(cancelButtonMask);
if (mode == testModeStandalone) {
_calWidget->_writeCalibration(false /* !trimsOnly */);
_validateParameters(validateMappingMask | validateReversedMask);
}
}
void PX4RCCalibrationTest::_detectInversionState_test(void)
{
_detectInversionState_worker(testModeStandalone);
}
void PX4RCCalibrationTest::_trimsState_worker(enum TestMode mode)
{
bool tryCancel1 = true;
StartOver:
if (mode == testModeStandalone || mode == testModePrerequisite) {
// In order to perform the trim state test the functions must be mapped and the min/max values must be set.
// So we have to run the _minMaxState_test first to set up the internal state correctly.
_minMaxState_worker(testModePrerequisite);
_centerChannels();
_calWidget->_unitTestForceCalState(PX4RCCalibration::rcCalStateTrims);
// We should now be waiting for low throttle.
CHK_BUTTONS(cancelButtonMask);
}
// Send trim values to attitude control function channels
for (int chan=0; chan<_attitudeChannels; chan++) {
_mockUAS->emitRemoteControlChannelRawChanged(chan, _rgChannelSettingsPreValidate[chan].rcTrim);
}
_validateWidgets(validateTrimsMask, _rgChannelSettingsPreValidate);
// Throttle trim was set, so next should be enabled
CHK_BUTTONS(cancelButtonMask | nextButtonMask);
// Click the next button which should set Trims and take us the Save step.
NEXT_OR_CANCEL(1);
QCOMPARE(_calWidget->_rcCalState, PX4RCCalibration::rcCalStateSave);
CHK_BUTTONS(cancelButtonMask | nextButtonMask);
_validateWidgets(validateTrimsMask, _rgChannelSettingsPostValidate);
if (mode == testModeStandalone) {
_calWidget->_writeCalibration(false /* !trimsOnly */);
_validateParameters(validateTrimsMask);
}
}
void PX4RCCalibrationTest::_trimsState_test(void)
{
_trimsState_worker(testModeStandalone);
}
void PX4RCCalibrationTest::_fullCalibration_test(void) {
_centerChannels();
QTest::mouseClick(_nextButton, Qt::LeftButton);
_beginState_worker(testModeFullSequence);
_identifyState_worker(testModeFullSequence);
_minMaxState_worker(testModeFullSequence);
_centerThrottleState_worker(testModeFullSequence);
_detectInversionState_worker(testModeFullSequence);
_trimsState_worker(testModeFullSequence);
// One more click and the parameters should get saved
QTest::mouseClick(_nextButton, Qt::LeftButton);
_validateParameters(validateAllMask);
_validateWidgets(validateAllMask, _rgChannelSettingsPostValidate);
}
/// @brief Sends RC center point values on minimum set of channels.
void PX4RCCalibrationTest::_centerChannels(void)
{
// Initialize available channels them to center point. This should also set the channel count above the
// minimum such that we can enter the idle state.
for (int i=0; i<_availableChannels; i++) {
_mockUAS->emitRemoteControlChannelRawChanged(i, (float)PX4RCCalibration::_rcCalPWMCenterPoint);
}
}
void PX4RCCalibrationTest::_validateParameters(int validateMask)
{
MockQGCUASParamManager* paramMgr = _mockUAS->getMockQGCUASParamManager();
MockQGCUASParamManager::ParamMap_t mapParamsSet = paramMgr->getMockSetParameters();
QString minTpl("RC%1_MIN");
QString maxTpl("RC%1_MAX");
QString trimTpl("RC%1_TRIM");
QString revTpl("RC%1_REV");
// Check mapping for all fuctions
for (int chanFunction=0; chanFunction<PX4RCCalibration::rcCalFunctionMax; chanFunction++) {
int expectedParameterValue;
if (PX4RCCalibration::_rgFunctionInfo[chanFunction].required) {
// We only map the required functions. All functions should be mapped to the same channel index
expectedParameterValue = chanFunction + 1; // 1-based parameter value
} else {
expectedParameterValue = 0; // 0 signals no mapping
}
if (validateMask & validateMappingMask) {
QCOMPARE(mapParamsSet.contains(PX4RCCalibration::_rgFunctionInfo[chanFunction].parameterName), true);
QCOMPARE(mapParamsSet[PX4RCCalibration::_rgFunctionInfo[chanFunction].parameterName].toInt(), expectedParameterValue);
}
}
// Validate the channel settings. Note the channels are 1-based in parameter names.
for (int chan = 0; chan<PX4RCCalibration::_chanMax; chan++) {
int oneBasedChannel = chan + 1;
int rcMinExpected, rcMaxExpected, rcTrimExpected;
bool convertOk;
// Required channels have min/max set on them. Remaining channels are left to default.
if (chan < PX4RCCalibration::_chanMinimum) {
rcMinExpected = _testMinValue;
rcMaxExpected = _testMaxValue;
} else {
rcMinExpected = PX4RCCalibration::_rcCalPWMDefaultMinValue;
rcMaxExpected = PX4RCCalibration::_rcCalPWMDefaultMaxValue;
}
// Attitude control functions have trim set, other channels trim should be default
if (chan >= PX4RCCalibration::rcCalFunctionFirstAttitudeFunction && chan <= PX4RCCalibration::rcCalFunctionLastAttitudeFunction) {
if (chan == PX4RCCalibration::rcCalFunctionThrottle) {
rcTrimExpected = _testThrottleTrimValue;
} else {
rcTrimExpected = _testTrimValue;
}
} else {
rcTrimExpected = PX4RCCalibration::_rcCalPWMDefaultTrimValue;
}
if (validateMask & validateMinMaxMask) {
QCOMPARE(mapParamsSet.contains(minTpl.arg(oneBasedChannel)), true);
QCOMPARE(mapParamsSet.contains(maxTpl.arg(oneBasedChannel)), true);
QCOMPARE(mapParamsSet[minTpl.arg(oneBasedChannel)].toInt(&convertOk), rcMinExpected);
QCOMPARE(convertOk, true);
QCOMPARE(mapParamsSet[maxTpl.arg(oneBasedChannel)].toInt(&convertOk), rcMaxExpected);
QCOMPARE(convertOk, true);
}
if (validateMask & validateTrimsMask) {
QCOMPARE(mapParamsSet.contains(trimTpl.arg(oneBasedChannel)), true);
QCOMPARE(mapParamsSet[trimTpl.arg(oneBasedChannel)].toInt(&convertOk), rcTrimExpected);
QCOMPARE(convertOk, true);
}
// No channels are reversed
if (validateMask & validateReversedMask) {
QCOMPARE(mapParamsSet.contains(revTpl.arg(oneBasedChannel)), true);
QCOMPARE(mapParamsSet[revTpl.arg(oneBasedChannel)].toFloat(&convertOk), 1.0f /* not reversed */);
QCOMPARE(convertOk, true);
}
}
if (validateMask & validateMappingMask) {
// Check mapping for all fuctions
for (int chanFunction=0; chanFunction<PX4RCCalibration::rcCalFunctionMax; chanFunction++) {
QCOMPARE(mapParamsSet.contains(PX4RCCalibration::_rgFunctionInfo[chanFunction].parameterName), true);
// We only map the required functions
int expectedValue;
if (PX4RCCalibration::_rgFunctionInfo[chanFunction].required) {
// All functions should be mapped to the same channel index
expectedValue = chanFunction + 1; // 1-based
} else {
expectedValue = 0; // 0 signals no mapping
}
QCOMPARE(mapParamsSet[PX4RCCalibration::_rgFunctionInfo[chanFunction].parameterName].toInt(), expectedValue);
}
}
}
void PX4RCCalibrationTest::_validateWidgets(int validateMask, const struct ChannelSettings* rgChannelSettings)
{
// Radio channel widgets should be displaying the current min/max we just set. Wait a bit for ui to update before checking.
QTest::qWait(PX4RCCalibration::_updateInterval * 2);
for (int chan=0; chan<_availableChannels; chan++) {
RCChannelWidget* radioWidget = _rgRadioWidget[chan];
Q_ASSERT(radioWidget);
if (validateMask & validateMinMaxMask) {
QCOMPARE(radioWidget->isMinMaxShown(), rgChannelSettings[chan].isMinMaxShown);
QCOMPARE(radioWidget->min(), rgChannelSettings[chan].rcMin);
QCOMPARE(radioWidget->max(), rgChannelSettings[chan].rcMax);
QCOMPARE(radioWidget->isMinValid(), rgChannelSettings[chan].isMinValid);
QCOMPARE(radioWidget->isMaxValid(), rgChannelSettings[chan].isMaxValid);
}
if (validateMask & validateTrimsMask) {
QCOMPARE(radioWidget->trim(), rgChannelSettings[chan].rcTrim);
}
}
for (int chan=_availableChannels; chan<PX4RCCalibration::_chanMax; chan++) {
QCOMPARE(_rgRadioWidget[chan]->isEnabled(), false);
}
}