8 changed files with 1235 additions and 442 deletions
@ -0,0 +1,706 @@ |
|||||||
|
/*=====================================================================
|
||||||
|
|
||||||
|
QGroundControl Open Source Ground Control Station |
||||||
|
|
||||||
|
(c) 2009, 2015 QGROUNDCONTROL PROJECT <http://www.qgroundcontrol.org>
|
||||||
|
|
||||||
|
This file is part of the QGROUNDCONTROL project |
||||||
|
|
||||||
|
QGROUNDCONTROL is free software: you can redistribute it and/or modify |
||||||
|
it under the terms of the GNU General Public License as published by |
||||||
|
the Free Software Foundation, either version 3 of the License, or |
||||||
|
(at your option) any later version. |
||||||
|
|
||||||
|
QGROUNDCONTROL is distributed in the hope that it will be useful, |
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||||
|
GNU General Public License for more details. |
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License |
||||||
|
along with QGROUNDCONTROL. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
======================================================================*/ |
||||||
|
|
||||||
|
#include "APMCompassCal.h" |
||||||
|
#include "AutoPilotPlugin.h" |
||||||
|
|
||||||
|
QGC_LOGGING_CATEGORY(APMCompassCalLog, "APMCompassCalLog") |
||||||
|
|
||||||
|
const float CalWorkerThread::mag_sphere_radius = 0.2f; |
||||||
|
const unsigned int CalWorkerThread::calibration_sides = 6; |
||||||
|
const unsigned int CalWorkerThread::calibration_total_points = 240; |
||||||
|
const unsigned int CalWorkerThread::calibraton_duration_seconds = CalWorkerThread::calibration_sides * 10; |
||||||
|
|
||||||
|
CalWorkerThread::CalWorkerThread(Vehicle* vehicle, QObject* parent) |
||||||
|
: QThread(parent) |
||||||
|
, _vehicle(vehicle) |
||||||
|
, _cancel(false) |
||||||
|
{ |
||||||
|
|
||||||
|
} |
||||||
|
|
||||||
|
void CalWorkerThread::run(void) |
||||||
|
{ |
||||||
|
if (calibrate() == calibrate_return_ok) { |
||||||
|
_emitVehicleTextMessage(QStringLiteral("[cal] progress <100>")); |
||||||
|
_emitVehicleTextMessage(QStringLiteral("[cal] calibration done: mag")); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
void CalWorkerThread::_emitVehicleTextMessage(const QString& message) |
||||||
|
{ |
||||||
|
emit vehicleTextMessage(_vehicle->id(), 0, MAV_SEVERITY_INFO, message); |
||||||
|
qCDebug(APMCompassCalLog) << message; |
||||||
|
} |
||||||
|
|
||||||
|
unsigned CalWorkerThread::progress_percentage(mag_worker_data_t* worker_data) |
||||||
|
{ |
||||||
|
return 100 * ((float)worker_data->done_count) / calibration_sides; |
||||||
|
} |
||||||
|
|
||||||
|
CalWorkerThread::calibrate_return CalWorkerThread::calibrate(void) |
||||||
|
{ |
||||||
|
calibrate_return result = calibrate_return_ok; |
||||||
|
|
||||||
|
mag_worker_data_t worker_data; |
||||||
|
|
||||||
|
worker_data.done_count = 0; |
||||||
|
worker_data.calibration_points_perside = calibration_total_points / calibration_sides; |
||||||
|
worker_data.calibration_interval_perside_seconds = calibraton_duration_seconds / calibration_sides; |
||||||
|
worker_data.calibration_interval_perside_useconds = worker_data.calibration_interval_perside_seconds * 1000 * 1000; |
||||||
|
|
||||||
|
// Collect data for all sides
|
||||||
|
worker_data.side_data_collected[DETECT_ORIENTATION_RIGHTSIDE_UP] = false; |
||||||
|
worker_data.side_data_collected[DETECT_ORIENTATION_LEFT] = false; |
||||||
|
worker_data.side_data_collected[DETECT_ORIENTATION_NOSE_DOWN] = false; |
||||||
|
worker_data.side_data_collected[DETECT_ORIENTATION_TAIL_DOWN] = false; |
||||||
|
worker_data.side_data_collected[DETECT_ORIENTATION_UPSIDE_DOWN] = false; |
||||||
|
worker_data.side_data_collected[DETECT_ORIENTATION_RIGHT] = false; |
||||||
|
|
||||||
|
for (size_t cur_mag=0; cur_mag<max_mags; cur_mag++) { |
||||||
|
// Initialize to no memory allocated
|
||||||
|
worker_data.x[cur_mag] = NULL; |
||||||
|
worker_data.y[cur_mag] = NULL; |
||||||
|
worker_data.z[cur_mag] = NULL; |
||||||
|
worker_data.calibration_counter_total[cur_mag] = 0; |
||||||
|
} |
||||||
|
|
||||||
|
const unsigned int calibration_points_maxcount = calibration_sides * worker_data.calibration_points_perside; |
||||||
|
|
||||||
|
for (size_t cur_mag=0; cur_mag<max_mags; cur_mag++) { |
||||||
|
if (rgCompassAvailable[cur_mag]) { |
||||||
|
worker_data.x[cur_mag] = reinterpret_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount)); |
||||||
|
worker_data.y[cur_mag] = reinterpret_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount)); |
||||||
|
worker_data.z[cur_mag] = reinterpret_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount)); |
||||||
|
if (worker_data.x[cur_mag] == NULL || worker_data.y[cur_mag] == NULL || worker_data.z[cur_mag] == NULL) { |
||||||
|
_emitVehicleTextMessage("[cal] ERROR: out of memory"); |
||||||
|
result = calibrate_return_error; |
||||||
|
} |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
if (result == calibrate_return_ok) { |
||||||
|
result = calibrate_from_orientation( |
||||||
|
worker_data.side_data_collected, // Sides to calibrate
|
||||||
|
&worker_data); // Opaque data for calibration worked
|
||||||
|
} |
||||||
|
|
||||||
|
// Calculate calibration values for each mag
|
||||||
|
|
||||||
|
float sphere_x[max_mags]; |
||||||
|
float sphere_y[max_mags]; |
||||||
|
float sphere_z[max_mags]; |
||||||
|
float sphere_radius[max_mags]; |
||||||
|
|
||||||
|
// Sphere fit the data to get calibration values
|
||||||
|
if (result == calibrate_return_ok) { |
||||||
|
for (unsigned cur_mag=0; cur_mag<max_mags; cur_mag++) { |
||||||
|
if (rgCompassAvailable[cur_mag]) { |
||||||
|
sphere_fit_least_squares(worker_data.x[cur_mag], worker_data.y[cur_mag], worker_data.z[cur_mag], |
||||||
|
worker_data.calibration_counter_total[cur_mag], |
||||||
|
100, 0.0f, |
||||||
|
&sphere_x[cur_mag], &sphere_y[cur_mag], &sphere_z[cur_mag], |
||||||
|
&sphere_radius[cur_mag]); |
||||||
|
|
||||||
|
if (qIsNaN(sphere_x[cur_mag]) || qIsNaN(sphere_y[cur_mag]) || qIsNaN(sphere_z[cur_mag])) { |
||||||
|
_emitVehicleTextMessage(QString("[cal] ERROR: NaN in sphere fit for mag %1").arg(cur_mag)); |
||||||
|
result = calibrate_return_error; |
||||||
|
} |
||||||
|
} |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
// Data points are no longer needed
|
||||||
|
for (size_t cur_mag=0; cur_mag<max_mags; cur_mag++) { |
||||||
|
free(worker_data.x[cur_mag]); |
||||||
|
free(worker_data.y[cur_mag]); |
||||||
|
free(worker_data.z[cur_mag]); |
||||||
|
} |
||||||
|
|
||||||
|
static const char* rgCompassOffsetParam[3][3] = { |
||||||
|
{ "COMPASS_OFS_X", "COMPASS_OFS_Y", "COMPASS_OFS_Z" }, |
||||||
|
{ "COMPASS_OFS2_X", "COMPASS_OFS2_Y", "COMPASS_OFS2_Z" }, |
||||||
|
{ "COMPASS_OFS3_X", "COMPASS_OFS3_Y", "COMPASS_OFS3_Z" }, |
||||||
|
}; |
||||||
|
|
||||||
|
AutoPilotPlugin* plugin = _vehicle->autopilotPlugin(); |
||||||
|
if (result == calibrate_return_ok) { |
||||||
|
for (unsigned cur_mag=0; cur_mag<max_mags; cur_mag++) { |
||||||
|
if (rgCompassAvailable[cur_mag]) { |
||||||
|
_emitVehicleTextMessage(QString("[cal] mag #%1 off: x:%2 y:%3 z:%4").arg(cur_mag).arg(-sphere_x[cur_mag]).arg(-sphere_y[cur_mag]).arg(-sphere_z[cur_mag])); |
||||||
|
|
||||||
|
const char* offsetParam = rgCompassOffsetParam[cur_mag][0]; |
||||||
|
plugin->getParameterFact(-1, offsetParam)->setRawValue(-sphere_x[cur_mag]); |
||||||
|
offsetParam = rgCompassOffsetParam[cur_mag][1]; |
||||||
|
plugin->getParameterFact(-1, offsetParam)->setRawValue(-sphere_y[cur_mag]); |
||||||
|
offsetParam = rgCompassOffsetParam[cur_mag][2]; |
||||||
|
plugin->getParameterFact(-1, offsetParam)->setRawValue(-sphere_z[cur_mag]); |
||||||
|
} |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
return result; |
||||||
|
} |
||||||
|
|
||||||
|
CalWorkerThread::calibrate_return CalWorkerThread::mag_calibration_worker(detect_orientation_return orientation, void* data) |
||||||
|
{ |
||||||
|
calibrate_return result = calibrate_return_ok; |
||||||
|
|
||||||
|
unsigned int calibration_counter_side; |
||||||
|
|
||||||
|
mag_worker_data_t* worker_data = (mag_worker_data_t*)(data); |
||||||
|
|
||||||
|
_emitVehicleTextMessage("[cal] Rotate vehicle around the detected orientation"); |
||||||
|
_emitVehicleTextMessage(QString("[cal] Continue rotation for %1 seconds").arg(worker_data->calibration_interval_perside_seconds)); |
||||||
|
|
||||||
|
uint64_t calibration_deadline = QGC::groundTimeUsecs() + worker_data->calibration_interval_perside_useconds; |
||||||
|
|
||||||
|
unsigned int loop_interval_usecs = (worker_data->calibration_interval_perside_seconds * 1000000) / worker_data->calibration_points_perside; |
||||||
|
|
||||||
|
calibration_counter_side = 0; |
||||||
|
|
||||||
|
while (QGC::groundTimeUsecs() < calibration_deadline && calibration_counter_side < worker_data->calibration_points_perside) { |
||||||
|
if (_cancel) { |
||||||
|
result = calibrate_return_cancelled; |
||||||
|
break; |
||||||
|
} |
||||||
|
|
||||||
|
int prev_count[max_mags]; |
||||||
|
bool rejected = false; |
||||||
|
|
||||||
|
for (size_t cur_mag=0; cur_mag<max_mags; cur_mag++) { |
||||||
|
prev_count[cur_mag] = worker_data->calibration_counter_total[cur_mag]; |
||||||
|
|
||||||
|
if (!rgCompassAvailable[cur_mag]) { |
||||||
|
continue; |
||||||
|
} |
||||||
|
|
||||||
|
lastScaledImuMutex.lock(); |
||||||
|
mavlink_scaled_imu_t copyLastScaledImu = rgLastScaledImu[cur_mag]; |
||||||
|
lastScaledImuMutex.unlock(); |
||||||
|
|
||||||
|
worker_data->x[cur_mag][worker_data->calibration_counter_total[cur_mag]] = copyLastScaledImu.xmag; |
||||||
|
worker_data->y[cur_mag][worker_data->calibration_counter_total[cur_mag]] = copyLastScaledImu.ymag; |
||||||
|
worker_data->z[cur_mag][worker_data->calibration_counter_total[cur_mag]] = copyLastScaledImu.zmag; |
||||||
|
worker_data->calibration_counter_total[cur_mag]++; |
||||||
|
} |
||||||
|
|
||||||
|
// Keep calibration of all mags in lockstep
|
||||||
|
if (rejected) { |
||||||
|
qCDebug(APMCompassCalLog) << QStringLiteral("Point rejected"); |
||||||
|
|
||||||
|
// Reset counts, since one of the mags rejected the measurement
|
||||||
|
for (size_t cur_mag = 0; cur_mag < max_mags; cur_mag++) { |
||||||
|
worker_data->calibration_counter_total[cur_mag] = prev_count[cur_mag]; |
||||||
|
} |
||||||
|
} else { |
||||||
|
calibration_counter_side++; |
||||||
|
|
||||||
|
// Progress indicator for side
|
||||||
|
_emitVehicleTextMessage(QString("[cal] %1 side calibration: progress <%2>").arg(detect_orientation_str(orientation)).arg(progress_percentage(worker_data) + |
||||||
|
(unsigned)((100 / calibration_sides) * ((float)calibration_counter_side / (float)worker_data->calibration_points_perside)))); |
||||||
|
} |
||||||
|
|
||||||
|
usleep(loop_interval_usecs); |
||||||
|
} |
||||||
|
|
||||||
|
if (result == calibrate_return_ok) { |
||||||
|
_emitVehicleTextMessage(QString("[cal] %1 side done, rotate to a different side").arg(detect_orientation_str(orientation))); |
||||||
|
|
||||||
|
worker_data->done_count++; |
||||||
|
_emitVehicleTextMessage(QString("[cal] progress <%1>").arg(progress_percentage(worker_data))); |
||||||
|
} |
||||||
|
|
||||||
|
return result; |
||||||
|
} |
||||||
|
|
||||||
|
CalWorkerThread::calibrate_return CalWorkerThread::calibrate_from_orientation( |
||||||
|
bool side_data_collected[detect_orientation_side_count], |
||||||
|
void* worker_data) |
||||||
|
{ |
||||||
|
calibrate_return result = calibrate_return_ok; |
||||||
|
|
||||||
|
unsigned orientation_failures = 0; |
||||||
|
|
||||||
|
// Rotate through all requested orientations
|
||||||
|
while (true) { |
||||||
|
if (_cancel) { |
||||||
|
result = calibrate_return_cancelled; |
||||||
|
break; |
||||||
|
} |
||||||
|
|
||||||
|
unsigned int side_complete_count = 0; |
||||||
|
|
||||||
|
// Update the number of completed sides
|
||||||
|
for (unsigned i = 0; i < detect_orientation_side_count; i++) { |
||||||
|
if (side_data_collected[i]) { |
||||||
|
side_complete_count++; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
if (side_complete_count == detect_orientation_side_count) { |
||||||
|
// We have completed all sides, move on
|
||||||
|
break; |
||||||
|
} |
||||||
|
|
||||||
|
/* inform user which orientations are still needed */ |
||||||
|
char pendingStr[256]; |
||||||
|
pendingStr[0] = 0; |
||||||
|
|
||||||
|
for (unsigned int cur_orientation=0; cur_orientation<detect_orientation_side_count; cur_orientation++) { |
||||||
|
if (!side_data_collected[cur_orientation]) { |
||||||
|
strcat(pendingStr, " "); |
||||||
|
strcat(pendingStr, detect_orientation_str((enum detect_orientation_return)cur_orientation)); |
||||||
|
} |
||||||
|
} |
||||||
|
_emitVehicleTextMessage(QString("[cal] pending:%1").arg(pendingStr)); |
||||||
|
|
||||||
|
_emitVehicleTextMessage(QStringLiteral("[cal] hold vehicle still on a pending side")); |
||||||
|
enum detect_orientation_return orient = detect_orientation(); |
||||||
|
|
||||||
|
if (orient == DETECT_ORIENTATION_ERROR) { |
||||||
|
orientation_failures++; |
||||||
|
_emitVehicleTextMessage(QStringLiteral("[cal] detected motion, hold still...")); |
||||||
|
continue; |
||||||
|
} |
||||||
|
|
||||||
|
/* inform user about already handled side */ |
||||||
|
if (side_data_collected[orient]) { |
||||||
|
orientation_failures++; |
||||||
|
_emitVehicleTextMessage(QString("%1 side already completed").arg(detect_orientation_str(orient))); |
||||||
|
_emitVehicleTextMessage(QStringLiteral("rotate to a pending side")); |
||||||
|
continue; |
||||||
|
} |
||||||
|
|
||||||
|
_emitVehicleTextMessage(QString("[cal] %1 orientation detected").arg(detect_orientation_str(orient))); |
||||||
|
orientation_failures = 0; |
||||||
|
|
||||||
|
// Call worker routine
|
||||||
|
result = mag_calibration_worker(orient, worker_data); |
||||||
|
if (result != calibrate_return_ok ) { |
||||||
|
break; |
||||||
|
} |
||||||
|
|
||||||
|
_emitVehicleTextMessage(QString("[cal] %1 side done, rotate to a different side").arg(detect_orientation_str(orient))); |
||||||
|
|
||||||
|
// Note that this side is complete
|
||||||
|
side_data_collected[orient] = true; |
||||||
|
usleep(200000); |
||||||
|
} |
||||||
|
|
||||||
|
return result; |
||||||
|
} |
||||||
|
|
||||||
|
enum CalWorkerThread::detect_orientation_return CalWorkerThread::detect_orientation(void) |
||||||
|
{ |
||||||
|
bool stillDetected = false; |
||||||
|
quint64 stillDetectTime; |
||||||
|
|
||||||
|
int16_t lastX = 0; |
||||||
|
int16_t lastY = 0; |
||||||
|
int16_t lastZ = 0; |
||||||
|
|
||||||
|
while (true) { |
||||||
|
lastScaledImuMutex.lock(); |
||||||
|
mavlink_raw_imu_t copyLastRawImu = lastRawImu; |
||||||
|
lastScaledImuMutex.unlock(); |
||||||
|
|
||||||
|
int16_t xDelta = abs(lastX - copyLastRawImu.xacc); |
||||||
|
int16_t yDelta = abs(lastY - copyLastRawImu.yacc); |
||||||
|
int16_t zDelta = abs(lastZ - copyLastRawImu.zacc); |
||||||
|
|
||||||
|
lastX = copyLastRawImu.xacc; |
||||||
|
lastY = copyLastRawImu.yacc; |
||||||
|
lastZ = copyLastRawImu.zacc; |
||||||
|
|
||||||
|
if (xDelta < 100 && yDelta < 100 && zDelta < 100) { |
||||||
|
if (stillDetected) { |
||||||
|
if (QGC::groundTimeMilliseconds() - stillDetectTime > 1000) { |
||||||
|
break; |
||||||
|
} |
||||||
|
} else { |
||||||
|
stillDetectTime = QGC::groundTimeMilliseconds(); |
||||||
|
stillDetected = true; |
||||||
|
} |
||||||
|
} else { |
||||||
|
stillDetected = false; |
||||||
|
} |
||||||
|
|
||||||
|
if (_cancel) { |
||||||
|
break; |
||||||
|
} |
||||||
|
|
||||||
|
// FIXME: No timeout for never detect still
|
||||||
|
|
||||||
|
usleep(1000); |
||||||
|
} |
||||||
|
|
||||||
|
static const uint16_t rawImuOneG = 800; |
||||||
|
static const uint16_t rawImuNoGThreshold = 200; |
||||||
|
|
||||||
|
if (lastX > rawImuOneG && abs(lastY) < rawImuNoGThreshold && abs(lastZ) < rawImuNoGThreshold) { |
||||||
|
return DETECT_ORIENTATION_TAIL_DOWN; // [ g, 0, 0 ]
|
||||||
|
} |
||||||
|
|
||||||
|
if (lastX < -rawImuOneG && abs(lastY) < rawImuNoGThreshold && abs(lastZ) < rawImuNoGThreshold) { |
||||||
|
return DETECT_ORIENTATION_NOSE_DOWN; // [ -g, 0, 0 ]
|
||||||
|
} |
||||||
|
|
||||||
|
if (lastY > rawImuOneG && abs(lastX) < rawImuNoGThreshold && abs(lastZ) < rawImuNoGThreshold) { |
||||||
|
return DETECT_ORIENTATION_LEFT; // [ 0, g, 0 ]
|
||||||
|
} |
||||||
|
|
||||||
|
if (lastY < -rawImuOneG && abs(lastX) < rawImuNoGThreshold && abs(lastZ) < rawImuNoGThreshold) { |
||||||
|
return DETECT_ORIENTATION_RIGHT; // [ 0, -g, 0 ]
|
||||||
|
} |
||||||
|
|
||||||
|
if (lastZ > rawImuOneG && abs(lastX) < rawImuNoGThreshold && abs(lastY) < rawImuNoGThreshold) { |
||||||
|
return DETECT_ORIENTATION_UPSIDE_DOWN; // [ 0, 0, g ]
|
||||||
|
} |
||||||
|
|
||||||
|
if (lastZ < -rawImuOneG && abs(lastX) < rawImuNoGThreshold && abs(lastY) < rawImuNoGThreshold) { |
||||||
|
return DETECT_ORIENTATION_RIGHTSIDE_UP; // [ 0, 0, -g ]
|
||||||
|
} |
||||||
|
|
||||||
|
_emitVehicleTextMessage(QStringLiteral("[cal] ERROR: invalid orientation")); |
||||||
|
|
||||||
|
return DETECT_ORIENTATION_ERROR; // Can't detect orientation
|
||||||
|
} |
||||||
|
|
||||||
|
const char* CalWorkerThread::detect_orientation_str(enum detect_orientation_return orientation) |
||||||
|
{ |
||||||
|
static const char* rgOrientationStrs[] = { |
||||||
|
"back", // tail down
|
||||||
|
"front", // nose down
|
||||||
|
"left", |
||||||
|
"right", |
||||||
|
"up", // upside-down
|
||||||
|
"down", // right-side up
|
||||||
|
"error" |
||||||
|
}; |
||||||
|
|
||||||
|
return rgOrientationStrs[orientation]; |
||||||
|
} |
||||||
|
|
||||||
|
int CalWorkerThread::sphere_fit_least_squares(const float x[], const float y[], const float z[], |
||||||
|
unsigned int size, unsigned int max_iterations, float delta, float *sphere_x, float *sphere_y, float *sphere_z, |
||||||
|
float *sphere_radius) |
||||||
|
{ |
||||||
|
|
||||||
|
float x_sumplain = 0.0f; |
||||||
|
float x_sumsq = 0.0f; |
||||||
|
float x_sumcube = 0.0f; |
||||||
|
|
||||||
|
float y_sumplain = 0.0f; |
||||||
|
float y_sumsq = 0.0f; |
||||||
|
float y_sumcube = 0.0f; |
||||||
|
|
||||||
|
float z_sumplain = 0.0f; |
||||||
|
float z_sumsq = 0.0f; |
||||||
|
float z_sumcube = 0.0f; |
||||||
|
|
||||||
|
float xy_sum = 0.0f; |
||||||
|
float xz_sum = 0.0f; |
||||||
|
float yz_sum = 0.0f; |
||||||
|
|
||||||
|
float x2y_sum = 0.0f; |
||||||
|
float x2z_sum = 0.0f; |
||||||
|
float y2x_sum = 0.0f; |
||||||
|
float y2z_sum = 0.0f; |
||||||
|
float z2x_sum = 0.0f; |
||||||
|
float z2y_sum = 0.0f; |
||||||
|
|
||||||
|
for (unsigned int i = 0; i < size; i++) { |
||||||
|
|
||||||
|
float x2 = x[i] * x[i]; |
||||||
|
float y2 = y[i] * y[i]; |
||||||
|
float z2 = z[i] * z[i]; |
||||||
|
|
||||||
|
x_sumplain += x[i]; |
||||||
|
x_sumsq += x2; |
||||||
|
x_sumcube += x2 * x[i]; |
||||||
|
|
||||||
|
y_sumplain += y[i]; |
||||||
|
y_sumsq += y2; |
||||||
|
y_sumcube += y2 * y[i]; |
||||||
|
|
||||||
|
z_sumplain += z[i]; |
||||||
|
z_sumsq += z2; |
||||||
|
z_sumcube += z2 * z[i]; |
||||||
|
|
||||||
|
xy_sum += x[i] * y[i]; |
||||||
|
xz_sum += x[i] * z[i]; |
||||||
|
yz_sum += y[i] * z[i]; |
||||||
|
|
||||||
|
x2y_sum += x2 * y[i]; |
||||||
|
x2z_sum += x2 * z[i]; |
||||||
|
|
||||||
|
y2x_sum += y2 * x[i]; |
||||||
|
y2z_sum += y2 * z[i]; |
||||||
|
|
||||||
|
z2x_sum += z2 * x[i]; |
||||||
|
z2y_sum += z2 * y[i]; |
||||||
|
} |
||||||
|
|
||||||
|
//
|
||||||
|
//Least Squares Fit a sphere A,B,C with radius squared Rsq to 3D data
|
||||||
|
//
|
||||||
|
// P is a structure that has been computed with the data earlier.
|
||||||
|
// P.npoints is the number of elements; the length of X,Y,Z are identical.
|
||||||
|
// P's members are logically named.
|
||||||
|
//
|
||||||
|
// X[n] is the x component of point n
|
||||||
|
// Y[n] is the y component of point n
|
||||||
|
// Z[n] is the z component of point n
|
||||||
|
//
|
||||||
|
// A is the x coordiante of the sphere
|
||||||
|
// B is the y coordiante of the sphere
|
||||||
|
// C is the z coordiante of the sphere
|
||||||
|
// Rsq is the radius squared of the sphere.
|
||||||
|
//
|
||||||
|
//This method should converge; maybe 5-100 iterations or more.
|
||||||
|
//
|
||||||
|
float x_sum = x_sumplain / size; //sum( X[n] )
|
||||||
|
float x_sum2 = x_sumsq / size; //sum( X[n]^2 )
|
||||||
|
float x_sum3 = x_sumcube / size; //sum( X[n]^3 )
|
||||||
|
float y_sum = y_sumplain / size; //sum( Y[n] )
|
||||||
|
float y_sum2 = y_sumsq / size; //sum( Y[n]^2 )
|
||||||
|
float y_sum3 = y_sumcube / size; //sum( Y[n]^3 )
|
||||||
|
float z_sum = z_sumplain / size; //sum( Z[n] )
|
||||||
|
float z_sum2 = z_sumsq / size; //sum( Z[n]^2 )
|
||||||
|
float z_sum3 = z_sumcube / size; //sum( Z[n]^3 )
|
||||||
|
|
||||||
|
float XY = xy_sum / size; //sum( X[n] * Y[n] )
|
||||||
|
float XZ = xz_sum / size; //sum( X[n] * Z[n] )
|
||||||
|
float YZ = yz_sum / size; //sum( Y[n] * Z[n] )
|
||||||
|
float X2Y = x2y_sum / size; //sum( X[n]^2 * Y[n] )
|
||||||
|
float X2Z = x2z_sum / size; //sum( X[n]^2 * Z[n] )
|
||||||
|
float Y2X = y2x_sum / size; //sum( Y[n]^2 * X[n] )
|
||||||
|
float Y2Z = y2z_sum / size; //sum( Y[n]^2 * Z[n] )
|
||||||
|
float Z2X = z2x_sum / size; //sum( Z[n]^2 * X[n] )
|
||||||
|
float Z2Y = z2y_sum / size; //sum( Z[n]^2 * Y[n] )
|
||||||
|
|
||||||
|
//Reduction of multiplications
|
||||||
|
float F0 = x_sum2 + y_sum2 + z_sum2; |
||||||
|
float F1 = 0.5f * F0; |
||||||
|
float F2 = -8.0f * (x_sum3 + Y2X + Z2X); |
||||||
|
float F3 = -8.0f * (X2Y + y_sum3 + Z2Y); |
||||||
|
float F4 = -8.0f * (X2Z + Y2Z + z_sum3); |
||||||
|
|
||||||
|
//Set initial conditions:
|
||||||
|
float A = x_sum; |
||||||
|
float B = y_sum; |
||||||
|
float C = z_sum; |
||||||
|
|
||||||
|
//First iteration computation:
|
||||||
|
float A2 = A * A; |
||||||
|
float B2 = B * B; |
||||||
|
float C2 = C * C; |
||||||
|
float QS = A2 + B2 + C2; |
||||||
|
float QB = -2.0f * (A * x_sum + B * y_sum + C * z_sum); |
||||||
|
|
||||||
|
//Set initial conditions:
|
||||||
|
float Rsq = F0 + QB + QS; |
||||||
|
|
||||||
|
//First iteration computation:
|
||||||
|
float Q0 = 0.5f * (QS - Rsq); |
||||||
|
float Q1 = F1 + Q0; |
||||||
|
float Q2 = 8.0f * (QS - Rsq + QB + F0); |
||||||
|
float aA, aB, aC, nA, nB, nC, dA, dB, dC; |
||||||
|
|
||||||
|
//Iterate N times, ignore stop condition.
|
||||||
|
unsigned int n = 0; |
||||||
|
|
||||||
|
#define FLT_EPSILON 1.1920929e-07F /* 1E-5 */ |
||||||
|
|
||||||
|
while (n < max_iterations) { |
||||||
|
n++; |
||||||
|
|
||||||
|
//Compute denominator:
|
||||||
|
aA = Q2 + 16.0f * (A2 - 2.0f * A * x_sum + x_sum2); |
||||||
|
aB = Q2 + 16.0f * (B2 - 2.0f * B * y_sum + y_sum2); |
||||||
|
aC = Q2 + 16.0f * (C2 - 2.0f * C * z_sum + z_sum2); |
||||||
|
aA = (fabsf(aA) < FLT_EPSILON) ? 1.0f : aA; |
||||||
|
aB = (fabsf(aB) < FLT_EPSILON) ? 1.0f : aB; |
||||||
|
aC = (fabsf(aC) < FLT_EPSILON) ? 1.0f : aC; |
||||||
|
|
||||||
|
//Compute next iteration
|
||||||
|
nA = A - ((F2 + 16.0f * (B * XY + C * XZ + x_sum * (-A2 - Q0) + A * (x_sum2 + Q1 - C * z_sum - B * y_sum))) / aA); |
||||||
|
nB = B - ((F3 + 16.0f * (A * XY + C * YZ + y_sum * (-B2 - Q0) + B * (y_sum2 + Q1 - A * x_sum - C * z_sum))) / aB); |
||||||
|
nC = C - ((F4 + 16.0f * (A * XZ + B * YZ + z_sum * (-C2 - Q0) + C * (z_sum2 + Q1 - A * x_sum - B * y_sum))) / aC); |
||||||
|
|
||||||
|
//Check for stop condition
|
||||||
|
dA = (nA - A); |
||||||
|
dB = (nB - B); |
||||||
|
dC = (nC - C); |
||||||
|
|
||||||
|
if ((dA * dA + dB * dB + dC * dC) <= delta) { break; } |
||||||
|
|
||||||
|
//Compute next iteration's values
|
||||||
|
A = nA; |
||||||
|
B = nB; |
||||||
|
C = nC; |
||||||
|
A2 = A * A; |
||||||
|
B2 = B * B; |
||||||
|
C2 = C * C; |
||||||
|
QS = A2 + B2 + C2; |
||||||
|
QB = -2.0f * (A * x_sum + B * y_sum + C * z_sum); |
||||||
|
Rsq = F0 + QB + QS; |
||||||
|
Q0 = 0.5f * (QS - Rsq); |
||||||
|
Q1 = F1 + Q0; |
||||||
|
Q2 = 8.0f * (QS - Rsq + QB + F0); |
||||||
|
} |
||||||
|
|
||||||
|
*sphere_x = A; |
||||||
|
*sphere_y = B; |
||||||
|
*sphere_z = C; |
||||||
|
*sphere_radius = sqrtf(Rsq); |
||||||
|
|
||||||
|
return 0; |
||||||
|
} |
||||||
|
|
||||||
|
APMCompassCal::APMCompassCal(void) |
||||||
|
: _vehicle(NULL) |
||||||
|
, _calWorkerThread(NULL) |
||||||
|
{ |
||||||
|
|
||||||
|
} |
||||||
|
|
||||||
|
APMCompassCal::~APMCompassCal() |
||||||
|
{ |
||||||
|
|
||||||
|
} |
||||||
|
|
||||||
|
void APMCompassCal::setVehicle(Vehicle* vehicle) |
||||||
|
{ |
||||||
|
if (!vehicle) { |
||||||
|
qWarning() << "vehicle == NULL"; |
||||||
|
} |
||||||
|
|
||||||
|
_vehicle = vehicle; |
||||||
|
} |
||||||
|
|
||||||
|
void APMCompassCal::startCalibration(void) |
||||||
|
{ |
||||||
|
_setSensorTransmissionSpeed(true /* fast */); |
||||||
|
connect (_vehicle, &Vehicle::mavlinkRawImu, this, &APMCompassCal::_handleMavlinkRawImu); |
||||||
|
connect (_vehicle, &Vehicle::mavlinkScaledImu2, this, &APMCompassCal::_handleMavlinkScaledImu2); |
||||||
|
connect (_vehicle, &Vehicle::mavlinkScaledImu3, this, &APMCompassCal::_handleMavlinkScaledImu3); |
||||||
|
|
||||||
|
// Simulate a start message
|
||||||
|
_emitVehicleTextMessage("[cal] calibration started: mag"); |
||||||
|
|
||||||
|
_calWorkerThread = new CalWorkerThread(_vehicle, this); |
||||||
|
connect(_calWorkerThread, &CalWorkerThread::vehicleTextMessage, this, &APMCompassCal::vehicleTextMessage); |
||||||
|
|
||||||
|
static const char* rgCompassOffsetParam[3][4] = { |
||||||
|
{ "COMPASS_OFS_X", "COMPASS_OFS_Y", "COMPASS_OFS_Z", "COMPASS_DEV_ID" }, |
||||||
|
{ "COMPASS_OFS2_X", "COMPASS_OFS2_Y", "COMPASS_OFS2_Z", "COMPASS_DEV_ID2" }, |
||||||
|
{ "COMPASS_OFS3_X", "COMPASS_OFS3_Y", "COMPASS_OFS3_Z", "COMPASS_DEV_ID3" }, |
||||||
|
}; |
||||||
|
|
||||||
|
// Clear the offset parameters so we get raw data
|
||||||
|
AutoPilotPlugin* plugin = _vehicle->autopilotPlugin(); |
||||||
|
for (int i=0; i<3; i++) { |
||||||
|
_calWorkerThread->rgCompassAvailable[i] = true; |
||||||
|
|
||||||
|
const char* deviceIdParam = rgCompassOffsetParam[i][3]; |
||||||
|
if (plugin->parameterExists(-1, deviceIdParam)) { |
||||||
|
if (plugin->getParameterFact(-1, deviceIdParam)->rawValue().toInt() > 0) { |
||||||
|
for (int j=0; j<3; j++) { |
||||||
|
const char* offsetParam = rgCompassOffsetParam[i][j]; |
||||||
|
if (plugin->parameterExists(-1, offsetParam)) { |
||||||
|
plugin->getParameterFact(-1, offsetParam)->setRawValue(0.0); |
||||||
|
} else { |
||||||
|
_calWorkerThread->rgCompassAvailable[i] = false; |
||||||
|
} |
||||||
|
} |
||||||
|
} else { |
||||||
|
_calWorkerThread->rgCompassAvailable[i] = false; |
||||||
|
} |
||||||
|
} else { |
||||||
|
_calWorkerThread->rgCompassAvailable[i] = false; |
||||||
|
} |
||||||
|
|
||||||
|
qCDebug(APMCompassCalLog) << QStringLiteral("Compass %1 available: %2").arg(i).arg(_calWorkerThread->rgCompassAvailable[i]); |
||||||
|
} |
||||||
|
|
||||||
|
_calWorkerThread->start(); |
||||||
|
} |
||||||
|
|
||||||
|
void APMCompassCal::cancelCalibration(void) |
||||||
|
{ |
||||||
|
_stopCalibration(); |
||||||
|
|
||||||
|
// Simulate a cancelled message
|
||||||
|
_emitVehicleTextMessage("[cal] calibration cancelled"); |
||||||
|
} |
||||||
|
|
||||||
|
void APMCompassCal::_handleMavlinkRawImu(mavlink_message_t message) |
||||||
|
{ |
||||||
|
_calWorkerThread->lastScaledImuMutex.lock(); |
||||||
|
mavlink_msg_raw_imu_decode(&message, &_calWorkerThread->lastRawImu); |
||||||
|
_calWorkerThread->rgLastScaledImu[0].xacc = _calWorkerThread->lastRawImu.xacc; |
||||||
|
_calWorkerThread->rgLastScaledImu[0].yacc = _calWorkerThread->lastRawImu.yacc; |
||||||
|
_calWorkerThread->rgLastScaledImu[0].zacc = _calWorkerThread->lastRawImu.zacc; |
||||||
|
_calWorkerThread->rgLastScaledImu[0].xgyro = _calWorkerThread->lastRawImu.xgyro; |
||||||
|
_calWorkerThread->rgLastScaledImu[0].ygyro = _calWorkerThread->lastRawImu.ygyro; |
||||||
|
_calWorkerThread->rgLastScaledImu[0].zgyro = _calWorkerThread->lastRawImu.zgyro; |
||||||
|
_calWorkerThread->rgLastScaledImu[0].xmag = _calWorkerThread->lastRawImu.xmag; |
||||||
|
_calWorkerThread->rgLastScaledImu[0].ymag = _calWorkerThread->lastRawImu.ymag; |
||||||
|
_calWorkerThread->rgLastScaledImu[0].zmag = _calWorkerThread->lastRawImu.zmag; |
||||||
|
_calWorkerThread->lastScaledImuMutex.unlock(); |
||||||
|
} |
||||||
|
|
||||||
|
void APMCompassCal::_handleMavlinkScaledImu2(mavlink_message_t message) |
||||||
|
{ |
||||||
|
_calWorkerThread->lastScaledImuMutex.lock(); |
||||||
|
mavlink_msg_scaled_imu2_decode(&message, (mavlink_scaled_imu2_t*)&_calWorkerThread->rgLastScaledImu[1]); |
||||||
|
_calWorkerThread->lastScaledImuMutex.unlock(); |
||||||
|
} |
||||||
|
|
||||||
|
void APMCompassCal::_handleMavlinkScaledImu3(mavlink_message_t message) |
||||||
|
{ |
||||||
|
_calWorkerThread->lastScaledImuMutex.lock(); |
||||||
|
mavlink_msg_scaled_imu3_decode(&message, (mavlink_scaled_imu3_t*)&_calWorkerThread->rgLastScaledImu[2]); |
||||||
|
_calWorkerThread->lastScaledImuMutex.unlock(); |
||||||
|
} |
||||||
|
|
||||||
|
void APMCompassCal::_setSensorTransmissionSpeed(bool fast) |
||||||
|
{ |
||||||
|
_vehicle->requestDataStream(MAV_DATA_STREAM_RAW_SENSORS, fast ? 10 : 2); |
||||||
|
} |
||||||
|
|
||||||
|
void APMCompassCal::_stopCalibration(void) |
||||||
|
{ |
||||||
|
_calWorkerThread->cancel(); |
||||||
|
disconnect (_vehicle, &Vehicle::mavlinkRawImu, this, &APMCompassCal::_handleMavlinkRawImu); |
||||||
|
disconnect (_vehicle, &Vehicle::mavlinkScaledImu2, this, &APMCompassCal::_handleMavlinkScaledImu2); |
||||||
|
disconnect (_vehicle, &Vehicle::mavlinkScaledImu3, this, &APMCompassCal::_handleMavlinkScaledImu3); |
||||||
|
_setSensorTransmissionSpeed(false /* fast */); |
||||||
|
} |
||||||
|
|
||||||
|
void APMCompassCal::_emitVehicleTextMessage(const QString& message) |
||||||
|
{ |
||||||
|
emit vehicleTextMessage(_vehicle->id(), 0, MAV_SEVERITY_INFO, message); |
||||||
|
} |
@ -0,0 +1,180 @@ |
|||||||
|
/*=====================================================================
|
||||||
|
|
||||||
|
QGroundControl Open Source Ground Control Station |
||||||
|
|
||||||
|
(c) 2009, 2015 QGROUNDCONTROL PROJECT <http://www.qgroundcontrol.org>
|
||||||
|
|
||||||
|
This file is part of the QGROUNDCONTROL project |
||||||
|
|
||||||
|
QGROUNDCONTROL is free software: you can redistribute it and/or modify |
||||||
|
it under the terms of the GNU General Public License as published by |
||||||
|
the Free Software Foundation, either version 3 of the License, or |
||||||
|
(at your option) any later version. |
||||||
|
|
||||||
|
QGROUNDCONTROL is distributed in the hope that it will be useful, |
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||||
|
GNU General Public License for more details. |
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License |
||||||
|
along with QGROUNDCONTROL. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
======================================================================*/ |
||||||
|
|
||||||
|
#ifndef APMCompassCal_H |
||||||
|
#define APMCompassCal_H |
||||||
|
|
||||||
|
#include <QObject> |
||||||
|
#include <QThread> |
||||||
|
#include <QVector3D> |
||||||
|
|
||||||
|
#include "QGCLoggingCategory.h" |
||||||
|
#include "QGCMAVLink.h" |
||||||
|
#include "Vehicle.h" |
||||||
|
|
||||||
|
Q_DECLARE_LOGGING_CATEGORY(APMCompassCalLog) |
||||||
|
|
||||||
|
class CalWorkerThread : public QThread |
||||||
|
{ |
||||||
|
Q_OBJECT |
||||||
|
|
||||||
|
public: |
||||||
|
CalWorkerThread(Vehicle* vehicle, QObject* parent = NULL); |
||||||
|
|
||||||
|
// Cancel currently in progress calibration
|
||||||
|
void cancel(void) { _cancel = true; } |
||||||
|
|
||||||
|
// Overrides from QThread
|
||||||
|
void run(void) Q_DECL_FINAL; |
||||||
|
|
||||||
|
static const unsigned max_mags = 3; |
||||||
|
|
||||||
|
bool rgCompassAvailable[max_mags]; |
||||||
|
QMutex lastScaledImuMutex; |
||||||
|
mavlink_raw_imu_t lastRawImu; |
||||||
|
mavlink_scaled_imu_t rgLastScaledImu[max_mags]; |
||||||
|
|
||||||
|
signals: |
||||||
|
void vehicleTextMessage(int vehicleId, int compId, int severity, QString text); |
||||||
|
|
||||||
|
private: |
||||||
|
void _emitVehicleTextMessage(const QString& message); |
||||||
|
|
||||||
|
// The routines below are based on the PX4 flight stack compass cal routines. Hence
|
||||||
|
// the PX4 Flight Stack coding style to maintain some level of code movement.
|
||||||
|
|
||||||
|
static const float mag_sphere_radius; |
||||||
|
static const unsigned int calibration_sides; ///< The total number of sides
|
||||||
|
static const unsigned int calibration_total_points; ///< The total points per magnetometer
|
||||||
|
static const unsigned int calibraton_duration_seconds; ///< The total duration the routine is allowed to take
|
||||||
|
|
||||||
|
// The order of these cannot change since the calibration calculations depend on them in this order
|
||||||
|
enum detect_orientation_return { |
||||||
|
DETECT_ORIENTATION_TAIL_DOWN, |
||||||
|
DETECT_ORIENTATION_NOSE_DOWN, |
||||||
|
DETECT_ORIENTATION_LEFT, |
||||||
|
DETECT_ORIENTATION_RIGHT, |
||||||
|
DETECT_ORIENTATION_UPSIDE_DOWN, |
||||||
|
DETECT_ORIENTATION_RIGHTSIDE_UP, |
||||||
|
DETECT_ORIENTATION_ERROR |
||||||
|
}; |
||||||
|
static const unsigned detect_orientation_side_count = 6; |
||||||
|
|
||||||
|
// Data passed to calibration worker routine
|
||||||
|
typedef struct { |
||||||
|
unsigned done_count; |
||||||
|
unsigned int calibration_points_perside; |
||||||
|
unsigned int calibration_interval_perside_seconds; |
||||||
|
uint64_t calibration_interval_perside_useconds; |
||||||
|
unsigned int calibration_counter_total[max_mags]; |
||||||
|
bool side_data_collected[detect_orientation_side_count]; |
||||||
|
float* x[max_mags]; |
||||||
|
float* y[max_mags]; |
||||||
|
float* z[max_mags]; |
||||||
|
} mag_worker_data_t; |
||||||
|
|
||||||
|
enum calibrate_return { |
||||||
|
calibrate_return_ok, |
||||||
|
calibrate_return_error, |
||||||
|
calibrate_return_cancelled |
||||||
|
}; |
||||||
|
|
||||||
|
/**
|
||||||
|
* Least-squares fit of a sphere to a set of points. |
||||||
|
* |
||||||
|
* Fits a sphere to a set of points on the sphere surface. |
||||||
|
* |
||||||
|
* @param x point coordinates on the X axis |
||||||
|
* @param y point coordinates on the Y axis |
||||||
|
* @param z point coordinates on the Z axis |
||||||
|
* @param size number of points |
||||||
|
* @param max_iterations abort if maximum number of iterations have been reached. If unsure, set to 100. |
||||||
|
* @param delta abort if error is below delta. If unsure, set to 0 to run max_iterations times. |
||||||
|
* @param sphere_x coordinate of the sphere center on the X axis |
||||||
|
* @param sphere_y coordinate of the sphere center on the Y axis |
||||||
|
* @param sphere_z coordinate of the sphere center on the Z axis |
||||||
|
* @param sphere_radius sphere radius |
||||||
|
* |
||||||
|
* @return 0 on success, 1 on failure |
||||||
|
*/ |
||||||
|
int sphere_fit_least_squares(const float x[], const float y[], const float z[], |
||||||
|
unsigned int size, unsigned int max_iterations, float delta, float *sphere_x, float *sphere_y, float *sphere_z, |
||||||
|
float *sphere_radius); |
||||||
|
|
||||||
|
/// Wait for vehicle to become still and detect it's orientation
|
||||||
|
/// @return Returns detect_orientation_return according to orientation of still vehicle
|
||||||
|
enum detect_orientation_return detect_orientation(void); |
||||||
|
|
||||||
|
/// Returns the human readable string representation of the orientation
|
||||||
|
/// @param orientation Orientation to return string for, "error" if buffer is too small
|
||||||
|
const char* detect_orientation_str(enum detect_orientation_return orientation); |
||||||
|
|
||||||
|
/// Perform calibration sequence which require a rest orientation detection prior to calibration.
|
||||||
|
/// @return OK: Calibration succeeded, ERROR: Calibration failed
|
||||||
|
calibrate_return calibrate_from_orientation( |
||||||
|
bool side_data_collected[detect_orientation_side_count], ///< Sides for which data still needs calibration
|
||||||
|
void* worker_data); ///< Opaque data passed to worker routine
|
||||||
|
|
||||||
|
bool reject_sample(float sx, float sy, float sz, float x[], float y[], float z[], unsigned count, unsigned max_count); |
||||||
|
|
||||||
|
calibrate_return calibrate(void); |
||||||
|
calibrate_return mag_calibration_worker(detect_orientation_return orientation, void* data); |
||||||
|
unsigned progress_percentage(mag_worker_data_t* worker_data); |
||||||
|
|
||||||
|
Vehicle* _vehicle; |
||||||
|
bool _cancel; |
||||||
|
}; |
||||||
|
|
||||||
|
// Used to calibrate APM Stack compass by simulating PX4 Flight Stack firmware compass cal
|
||||||
|
// on the ground station side of things.
|
||||||
|
class APMCompassCal : public QObject |
||||||
|
{ |
||||||
|
Q_OBJECT |
||||||
|
|
||||||
|
public: |
||||||
|
APMCompassCal(void); |
||||||
|
~APMCompassCal(); |
||||||
|
|
||||||
|
void setVehicle(Vehicle* vehicle); |
||||||
|
void startCalibration(void); |
||||||
|
void cancelCalibration(void); |
||||||
|
|
||||||
|
signals: |
||||||
|
void vehicleTextMessage(int vehicleId, int compId, int severity, QString text); |
||||||
|
|
||||||
|
private slots: |
||||||
|
void _handleMavlinkRawImu(mavlink_message_t message); |
||||||
|
void _handleMavlinkScaledImu2(mavlink_message_t message); |
||||||
|
void _handleMavlinkScaledImu3(mavlink_message_t message); |
||||||
|
|
||||||
|
private: |
||||||
|
void _setSensorTransmissionSpeed(bool fast); |
||||||
|
void _stopCalibration(void); |
||||||
|
void _emitVehicleTextMessage(const QString& message); |
||||||
|
|
||||||
|
Vehicle* _vehicle; |
||||||
|
CalWorkerThread* _calWorkerThread; |
||||||
|
}; |
||||||
|
|
||||||
|
#endif |
||||||
|
|
Loading…
Reference in new issue