You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
384 lines
8.3 KiB
384 lines
8.3 KiB
/* -*- mode: C++ ; c-file-style: "stroustrup" -*- ***************************** |
|
* Qwt Widget Library |
|
* Copyright (C) 1997 Josef Wilgen |
|
* Copyright (C) 2002 Uwe Rathmann |
|
* |
|
* This library is free software; you can redistribute it and/or |
|
* modify it under the terms of the Qwt License, Version 1.0 |
|
*****************************************************************************/ |
|
|
|
#include "qwt_spline.h" |
|
#include "qwt_math.h" |
|
|
|
class QwtSpline::PrivateData |
|
{ |
|
public: |
|
PrivateData(): |
|
splineType( QwtSpline::Natural ) |
|
{ |
|
} |
|
|
|
QwtSpline::SplineType splineType; |
|
|
|
// coefficient vectors |
|
QVector<double> a; |
|
QVector<double> b; |
|
QVector<double> c; |
|
|
|
// control points |
|
QPolygonF points; |
|
}; |
|
|
|
static int lookup( double x, const QPolygonF &values ) |
|
{ |
|
#if 0 |
|
//qLowerBound/qHigherBound ??? |
|
#endif |
|
int i1; |
|
const int size = values.size(); |
|
|
|
if ( x <= values[0].x() ) |
|
i1 = 0; |
|
else if ( x >= values[size - 2].x() ) |
|
i1 = size - 2; |
|
else |
|
{ |
|
i1 = 0; |
|
int i2 = size - 2; |
|
int i3 = 0; |
|
|
|
while ( i2 - i1 > 1 ) |
|
{ |
|
i3 = i1 + ( ( i2 - i1 ) >> 1 ); |
|
|
|
if ( values[i3].x() > x ) |
|
i2 = i3; |
|
else |
|
i1 = i3; |
|
} |
|
} |
|
return i1; |
|
} |
|
|
|
//! Constructor |
|
QwtSpline::QwtSpline() |
|
{ |
|
d_data = new PrivateData; |
|
} |
|
|
|
/*! |
|
Copy constructor |
|
\param other Spline used for initialization |
|
*/ |
|
QwtSpline::QwtSpline( const QwtSpline& other ) |
|
{ |
|
d_data = new PrivateData( *other.d_data ); |
|
} |
|
|
|
/*! |
|
Assignment operator |
|
\param other Spline used for initialization |
|
\return *this |
|
*/ |
|
QwtSpline &QwtSpline::operator=( const QwtSpline & other ) |
|
{ |
|
*d_data = *other.d_data; |
|
return *this; |
|
} |
|
|
|
//! Destructor |
|
QwtSpline::~QwtSpline() |
|
{ |
|
delete d_data; |
|
} |
|
|
|
/*! |
|
Select the algorithm used for calculating the spline |
|
|
|
\param splineType Spline type |
|
\sa splineType() |
|
*/ |
|
void QwtSpline::setSplineType( SplineType splineType ) |
|
{ |
|
d_data->splineType = splineType; |
|
} |
|
|
|
/*! |
|
\return the spline type |
|
\sa setSplineType() |
|
*/ |
|
QwtSpline::SplineType QwtSpline::splineType() const |
|
{ |
|
return d_data->splineType; |
|
} |
|
|
|
/*! |
|
\brief Calculate the spline coefficients |
|
|
|
Depending on the value of \a periodic, this function |
|
will determine the coefficients for a natural or a periodic |
|
spline and store them internally. |
|
|
|
\param points Points |
|
\return true if successful |
|
\warning The sequence of x (but not y) values has to be strictly monotone |
|
increasing, which means <code>points[i].x() < points[i+1].x()</code>. |
|
If this is not the case, the function will return false |
|
*/ |
|
bool QwtSpline::setPoints( const QPolygonF& points ) |
|
{ |
|
const int size = points.size(); |
|
if ( size <= 2 ) |
|
{ |
|
reset(); |
|
return false; |
|
} |
|
|
|
d_data->points = points; |
|
|
|
d_data->a.resize( size - 1 ); |
|
d_data->b.resize( size - 1 ); |
|
d_data->c.resize( size - 1 ); |
|
|
|
bool ok; |
|
if ( d_data->splineType == Periodic ) |
|
ok = buildPeriodicSpline( points ); |
|
else |
|
ok = buildNaturalSpline( points ); |
|
|
|
if ( !ok ) |
|
reset(); |
|
|
|
return ok; |
|
} |
|
|
|
/*! |
|
\return Points, that have been by setPoints() |
|
*/ |
|
QPolygonF QwtSpline::points() const |
|
{ |
|
return d_data->points; |
|
} |
|
|
|
//! \return A coefficients |
|
const QVector<double> &QwtSpline::coefficientsA() const |
|
{ |
|
return d_data->a; |
|
} |
|
|
|
//! \return B coefficients |
|
const QVector<double> &QwtSpline::coefficientsB() const |
|
{ |
|
return d_data->b; |
|
} |
|
|
|
//! \return C coefficients |
|
const QVector<double> &QwtSpline::coefficientsC() const |
|
{ |
|
return d_data->c; |
|
} |
|
|
|
|
|
//! Free allocated memory and set size to 0 |
|
void QwtSpline::reset() |
|
{ |
|
d_data->a.resize( 0 ); |
|
d_data->b.resize( 0 ); |
|
d_data->c.resize( 0 ); |
|
d_data->points.resize( 0 ); |
|
} |
|
|
|
//! True if valid |
|
bool QwtSpline::isValid() const |
|
{ |
|
return d_data->a.size() > 0; |
|
} |
|
|
|
/*! |
|
Calculate the interpolated function value corresponding |
|
to a given argument x. |
|
|
|
\param x Coordinate |
|
\return Interpolated coordinate |
|
*/ |
|
double QwtSpline::value( double x ) const |
|
{ |
|
if ( d_data->a.size() == 0 ) |
|
return 0.0; |
|
|
|
const int i = lookup( x, d_data->points ); |
|
|
|
const double delta = x - d_data->points[i].x(); |
|
return( ( ( ( d_data->a[i] * delta ) + d_data->b[i] ) |
|
* delta + d_data->c[i] ) * delta + d_data->points[i].y() ); |
|
} |
|
|
|
/*! |
|
\brief Determines the coefficients for a natural spline |
|
\return true if successful |
|
*/ |
|
bool QwtSpline::buildNaturalSpline( const QPolygonF &points ) |
|
{ |
|
int i; |
|
|
|
const QPointF *p = points.data(); |
|
const int size = points.size(); |
|
|
|
double *a = d_data->a.data(); |
|
double *b = d_data->b.data(); |
|
double *c = d_data->c.data(); |
|
|
|
// set up tridiagonal equation system; use coefficient |
|
// vectors as temporary buffers |
|
QVector<double> h( size - 1 ); |
|
for ( i = 0; i < size - 1; i++ ) |
|
{ |
|
h[i] = p[i+1].x() - p[i].x(); |
|
if ( h[i] <= 0 ) |
|
return false; |
|
} |
|
|
|
QVector<double> d( size - 1 ); |
|
double dy1 = ( p[1].y() - p[0].y() ) / h[0]; |
|
for ( i = 1; i < size - 1; i++ ) |
|
{ |
|
b[i] = c[i] = h[i]; |
|
a[i] = 2.0 * ( h[i-1] + h[i] ); |
|
|
|
const double dy2 = ( p[i+1].y() - p[i].y() ) / h[i]; |
|
d[i] = 6.0 * ( dy1 - dy2 ); |
|
dy1 = dy2; |
|
} |
|
|
|
// |
|
// solve it |
|
// |
|
|
|
// L-U Factorization |
|
for ( i = 1; i < size - 2; i++ ) |
|
{ |
|
c[i] /= a[i]; |
|
a[i+1] -= b[i] * c[i]; |
|
} |
|
|
|
// forward elimination |
|
QVector<double> s( size ); |
|
s[1] = d[1]; |
|
for ( i = 2; i < size - 1; i++ ) |
|
s[i] = d[i] - c[i-1] * s[i-1]; |
|
|
|
// backward elimination |
|
s[size - 2] = - s[size - 2] / a[size - 2]; |
|
for ( i = size - 3; i > 0; i-- ) |
|
s[i] = - ( s[i] + b[i] * s[i+1] ) / a[i]; |
|
s[size - 1] = s[0] = 0.0; |
|
|
|
// |
|
// Finally, determine the spline coefficients |
|
// |
|
for ( i = 0; i < size - 1; i++ ) |
|
{ |
|
a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i] ); |
|
b[i] = 0.5 * s[i]; |
|
c[i] = ( p[i+1].y() - p[i].y() ) / h[i] |
|
- ( s[i+1] + 2.0 * s[i] ) * h[i] / 6.0; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/*! |
|
\brief Determines the coefficients for a periodic spline |
|
\return true if successful |
|
*/ |
|
bool QwtSpline::buildPeriodicSpline( const QPolygonF &points ) |
|
{ |
|
int i; |
|
|
|
const QPointF *p = points.data(); |
|
const int size = points.size(); |
|
|
|
double *a = d_data->a.data(); |
|
double *b = d_data->b.data(); |
|
double *c = d_data->c.data(); |
|
|
|
QVector<double> d( size - 1 ); |
|
QVector<double> h( size - 1 ); |
|
QVector<double> s( size ); |
|
|
|
// |
|
// setup equation system; use coefficient |
|
// vectors as temporary buffers |
|
// |
|
for ( i = 0; i < size - 1; i++ ) |
|
{ |
|
h[i] = p[i+1].x() - p[i].x(); |
|
if ( h[i] <= 0.0 ) |
|
return false; |
|
} |
|
|
|
const int imax = size - 2; |
|
double htmp = h[imax]; |
|
double dy1 = ( p[0].y() - p[imax].y() ) / htmp; |
|
for ( i = 0; i <= imax; i++ ) |
|
{ |
|
b[i] = c[i] = h[i]; |
|
a[i] = 2.0 * ( htmp + h[i] ); |
|
const double dy2 = ( p[i+1].y() - p[i].y() ) / h[i]; |
|
d[i] = 6.0 * ( dy1 - dy2 ); |
|
dy1 = dy2; |
|
htmp = h[i]; |
|
} |
|
|
|
// |
|
// solve it |
|
// |
|
|
|
// L-U Factorization |
|
a[0] = qSqrt( a[0] ); |
|
c[0] = h[imax] / a[0]; |
|
double sum = 0; |
|
|
|
for ( i = 0; i < imax - 1; i++ ) |
|
{ |
|
b[i] /= a[i]; |
|
if ( i > 0 ) |
|
c[i] = - c[i-1] * b[i-1] / a[i]; |
|
a[i+1] = qSqrt( a[i+1] - qwtSqr( b[i] ) ); |
|
sum += qwtSqr( c[i] ); |
|
} |
|
b[imax-1] = ( b[imax-1] - c[imax-2] * b[imax-2] ) / a[imax-1]; |
|
a[imax] = qSqrt( a[imax] - qwtSqr( b[imax-1] ) - sum ); |
|
|
|
|
|
// forward elimination |
|
s[0] = d[0] / a[0]; |
|
sum = 0; |
|
for ( i = 1; i < imax; i++ ) |
|
{ |
|
s[i] = ( d[i] - b[i-1] * s[i-1] ) / a[i]; |
|
sum += c[i-1] * s[i-1]; |
|
} |
|
s[imax] = ( d[imax] - b[imax-1] * s[imax-1] - sum ) / a[imax]; |
|
|
|
|
|
// backward elimination |
|
s[imax] = - s[imax] / a[imax]; |
|
s[imax-1] = -( s[imax-1] + b[imax-1] * s[imax] ) / a[imax-1]; |
|
for ( i = imax - 2; i >= 0; i-- ) |
|
s[i] = - ( s[i] + b[i] * s[i+1] + c[i] * s[imax] ) / a[i]; |
|
|
|
// |
|
// Finally, determine the spline coefficients |
|
// |
|
s[size-1] = s[0]; |
|
for ( i = 0; i < size - 1; i++ ) |
|
{ |
|
a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i] ); |
|
b[i] = 0.5 * s[i]; |
|
c[i] = ( p[i+1].y() - p[i].y() ) |
|
/ h[i] - ( s[i+1] + 2.0 * s[i] ) * h[i] / 6.0; |
|
} |
|
|
|
return true; |
|
}
|
|
|