You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1077 lines
44 KiB
1077 lines
44 KiB
/** |
|
****************************************************************************** |
|
* |
|
* @file worldmagmodel.cpp |
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. |
|
* @brief Utilities to find the location of openpilot GCS files: |
|
* - Plugins Share directory path |
|
* |
|
* @brief Source file for the World Magnetic Model |
|
* This is a port of code available from the US NOAA. |
|
* |
|
* The hard coded coefficients should be valid until 2015. |
|
* |
|
* Updated coeffs from .. |
|
* http://www.ngdc.noaa.gov/geomag/WMM/wmm_ddownload.shtml |
|
* |
|
* NASA C source code .. |
|
* http://www.ngdc.noaa.gov/geomag/WMM/wmm_wdownload.shtml |
|
* |
|
* Major changes include: |
|
* - No geoid model (altitude must be geodetic WGS-84) |
|
* - Floating point calculation (not double precision) |
|
* - Hard coded coefficients for model |
|
* - Elimination of user interface |
|
* - Elimination of dynamic memory allocation |
|
* |
|
* @see The GNU Public License (GPL) Version 3 |
|
* |
|
*****************************************************************************/ |
|
/* |
|
* This program is free software; you can redistribute it and/or modify |
|
* it under the terms of the GNU General Public License as published by |
|
* the Free Software Foundation; either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This program is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program; if not, write to the Free Software Foundation, Inc., |
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
*/ |
|
|
|
#include "worldmagmodel.h" |
|
|
|
#include <stdint.h> |
|
#include <QDebug> |
|
#include <math.h> |
|
#include <qmath.h> |
|
|
|
#define RAD2DEG(rad) ((rad) * (180.0 / M_PI)) |
|
#define DEG2RAD(deg) ((deg) * (M_PI / 180.0)) |
|
|
|
// updated coeffs available from http://www.ngdc.noaa.gov/geomag/WMM/wmm_ddownload.shtml |
|
const double CoeffFile[91][6] = { |
|
{0, 0, 0, 0, 0, 0}, |
|
{1, 0, -29496.6, 0.0, 11.6, 0.0}, |
|
{1, 1, -1586.3, 4944.4, 16.5, -25.9}, |
|
{2, 0, -2396.6, 0.0, -12.1, 0.0}, |
|
{2, 1, 3026.1, -2707.7, -4.4, -22.5}, |
|
{2, 2, 1668.6, -576.1, 1.9, -11.8}, |
|
{3, 0, 1340.1, 0.0, 0.4, 0.0}, |
|
{3, 1, -2326.2, -160.2, -4.1, 7.3}, |
|
{3, 2, 1231.9, 251.9, -2.9, -3.9}, |
|
{3, 3, 634.0, -536.6, -7.7, -2.6}, |
|
{4, 0, 912.6, 0.0, -1.8, 0.0}, |
|
{4, 1, 808.9, 286.4, 2.3, 1.1}, |
|
{4, 2, 166.7, -211.2, -8.7, 2.7}, |
|
{4, 3, -357.1, 164.3, 4.6, 3.9}, |
|
{4, 4, 89.4, -309.1, -2.1, -0.8}, |
|
{5, 0, -230.9, 0.0, -1.0, 0.0}, |
|
{5, 1, 357.2, 44.6, 0.6, 0.4}, |
|
{5, 2, 200.3, 188.9, -1.8, 1.8}, |
|
{5, 3, -141.1, -118.2, -1.0, 1.2}, |
|
{5, 4, -163.0, 0.0, 0.9, 4.0}, |
|
{5, 5, -7.8, 100.9, 1.0, -0.6}, |
|
{6, 0, 72.8, 0.0, -0.2, 0.0}, |
|
{6, 1, 68.6, -20.8, -0.2, -0.2}, |
|
{6, 2, 76.0, 44.1, -0.1, -2.1}, |
|
{6, 3, -141.4, 61.5, 2.0, -0.4}, |
|
{6, 4, -22.8, -66.3, -1.7, -0.6}, |
|
{6, 5, 13.2, 3.1, -0.3, 0.5}, |
|
{6, 6, -77.9, 55.0, 1.7, 0.9}, |
|
{7, 0, 80.5, 0.0, 0.1, 0.0}, |
|
{7, 1, -75.1, -57.9, -0.1, 0.7}, |
|
{7, 2, -4.7, -21.1, -0.6, 0.3}, |
|
{7, 3, 45.3, 6.5, 1.3, -0.1}, |
|
{7, 4, 13.9, 24.9, 0.4, -0.1}, |
|
{7, 5, 10.4, 7.0, 0.3, -0.8}, |
|
{7, 6, 1.7, -27.7, -0.7, -0.3}, |
|
{7, 7, 4.9, -3.3, 0.6, 0.3}, |
|
{8, 0, 24.4, 0.0, -0.1, 0.0}, |
|
{8, 1, 8.1, 11.0, 0.1, -0.1}, |
|
{8, 2, -14.5, -20.0, -0.6, 0.2}, |
|
{8, 3, -5.6, 11.9, 0.2, 0.4}, |
|
{8, 4, -19.3, -17.4, -0.2, 0.4}, |
|
{8, 5, 11.5, 16.7, 0.3, 0.1}, |
|
{8, 6, 10.9, 7.0, 0.3, -0.1}, |
|
{8, 7, -14.1, -10.8, -0.6, 0.4}, |
|
{8, 8, -3.7, 1.7, 0.2, 0.3}, |
|
{9, 0, 5.4, 0.0, 0.0, 0.0}, |
|
{9, 1, 9.4, -20.5, -0.1, 0.0}, |
|
{9, 2, 3.4, 11.5, 0.0, -0.2}, |
|
{9, 3, -5.2, 12.8, 0.3, 0.0}, |
|
{9, 4, 3.1, -7.2, -0.4, -0.1}, |
|
{9, 5, -12.4, -7.4, -0.3, 0.1}, |
|
{9, 6, -0.7, 8.0, 0.1, 0.0}, |
|
{9, 7, 8.4, 2.1, -0.1, -0.2}, |
|
{9, 8, -8.5, -6.1, -0.4, 0.3}, |
|
{9, 9, -10.1, 7.0, -0.2, 0.2}, |
|
{10, 0, -2.0, 0.0, 0.0, 0.0}, |
|
{10, 1, -6.3, 2.8, 0.0, 0.1}, |
|
{10, 2, 0.9, -0.1, -0.1, -0.1}, |
|
{10, 3, -1.1, 4.7, 0.2, 0.0}, |
|
{10, 4, -0.2, 4.4, 0.0, -0.1}, |
|
{10, 5, 2.5, -7.2, -0.1, -0.1}, |
|
{10, 6, -0.3, -1.0, -0.2, 0.0}, |
|
{10, 7, 2.2, -3.9, 0.0, -0.1}, |
|
{10, 8, 3.1, -2.0, -0.1, -0.2}, |
|
{10, 9, -1.0, -2.0, -0.2, 0.0}, |
|
{10, 10, -2.8, -8.3, -0.2, -0.1}, |
|
{11, 0, 3.0, 0.0, 0.0, 0.0}, |
|
{11, 1, -1.5, 0.2, 0.0, 0.0}, |
|
{11, 2, -2.1, 1.7, 0.0, 0.1}, |
|
{11, 3, 1.7, -0.6, 0.1, 0.0}, |
|
{11, 4, -0.5, -1.8, 0.0, 0.1}, |
|
{11, 5, 0.5, 0.9, 0.0, 0.0}, |
|
{11, 6, -0.8, -0.4, 0.0, 0.1}, |
|
{11, 7, 0.4, -2.5, 0.0, 0.0}, |
|
{11, 8, 1.8, -1.3, 0.0, -0.1}, |
|
{11, 9, 0.1, -2.1, 0.0, -0.1}, |
|
{11, 10, 0.7, -1.9, -0.1, 0.0}, |
|
{11, 11, 3.8, -1.8, 0.0, -0.1}, |
|
{12, 0, -2.2, 0.0, 0.0, 0.0}, |
|
{12, 1, -0.2, -0.9, 0.0, 0.0}, |
|
{12, 2, 0.3, 0.3, 0.1, 0.0}, |
|
{12, 3, 1.0, 2.1, 0.1, 0.0}, |
|
{12, 4, -0.6, -2.5, -0.1, 0.0}, |
|
{12, 5, 0.9, 0.5, 0.0, 0.0}, |
|
{12, 6, -0.1, 0.6, 0.0, 0.1}, |
|
{12, 7, 0.5, 0.0, 0.0, 0.0}, |
|
{12, 8, -0.4, 0.1, 0.0, 0.0}, |
|
{12, 9, -0.4, 0.3, 0.0, 0.0}, |
|
{12, 10, 0.2, -0.9, 0.0, 0.0}, |
|
{12, 11, -0.8, -0.2, -0.1, 0.0}, |
|
{12, 12, 0.0, 0.9, 0.1, 0.0} |
|
}; |
|
|
|
namespace Utils { |
|
|
|
WorldMagModel::WorldMagModel() |
|
{ |
|
Initialize(); |
|
} |
|
|
|
int WorldMagModel::GetMagVector(double LLA[3], int Month, int Day, int Year, double Be[3]) |
|
{ |
|
double Lat = LLA[0]; |
|
double Lon = LLA[1]; |
|
double AltEllipsoid = LLA[2]; |
|
|
|
// *********** |
|
// range check supplied params |
|
|
|
if (Lat < -90) return -1; // error |
|
if (Lat > 90) return -2; // error |
|
|
|
if (Lon < -180) return -3; // error |
|
if (Lon > 180) return -4; // error |
|
|
|
// *********** |
|
|
|
WMMtype_CoordSpherical CoordSpherical; |
|
WMMtype_CoordGeodetic CoordGeodetic; |
|
WMMtype_GeoMagneticElements GeoMagneticElements; |
|
|
|
Initialize(); |
|
|
|
CoordGeodetic.lambda = Lon; |
|
CoordGeodetic.phi = Lat; |
|
CoordGeodetic.HeightAboveEllipsoid = AltEllipsoid; |
|
|
|
// Convert from geodeitic to Spherical Equations: 17-18, WMM Technical report |
|
GeodeticToSpherical(&CoordGeodetic, &CoordSpherical); |
|
|
|
if (DateToYear(Month, Day, Year) < 0) |
|
return -5; // error |
|
|
|
// Compute the geoMagnetic field elements and their time change |
|
if (Geomag(&CoordSpherical, &CoordGeodetic, &GeoMagneticElements) < 0) |
|
return -6; // error |
|
|
|
// set the returned values |
|
Be[0] = GeoMagneticElements.X * 1e-2; |
|
Be[1] = GeoMagneticElements.Y * 1e-2; |
|
Be[2] = GeoMagneticElements.Z * 1e-2; |
|
|
|
// *********** |
|
|
|
return 0; // OK |
|
} |
|
|
|
void WorldMagModel::Initialize() |
|
{ // Sets default values for WMM subroutines. |
|
// UPDATES : Ellip and MagneticModel |
|
|
|
// Sets WGS-84 parameters |
|
Ellip.a = 6378.137; // semi-major axis of the ellipsoid in km |
|
Ellip.b = 6356.7523142; // semi-minor axis of the ellipsoid in km |
|
Ellip.fla = 1 / 298.257223563; // flattening |
|
Ellip.eps = sqrt(1 - (Ellip.b * Ellip.b) / (Ellip.a * Ellip.a)); // first eccentricity |
|
Ellip.epssq = (Ellip.eps * Ellip.eps); // first eccentricity squared |
|
Ellip.re = 6371.2; // Earth's radius in km |
|
|
|
// Sets Magnetic Model parameters |
|
MagneticModel.nMax = WMM_MAX_MODEL_DEGREES; |
|
MagneticModel.nMaxSecVar = WMM_MAX_SECULAR_VARIATION_MODEL_DEGREES; |
|
MagneticModel.SecularVariationUsed = 0; |
|
|
|
// Really, Really needs to be read from a file - out of date in 2015 at latest |
|
MagneticModel.EditionDate = 5.7863328170559505e-307; |
|
MagneticModel.epoch = 2010.0; |
|
sprintf(MagneticModel.ModelName, "WMM-2010"); |
|
} |
|
|
|
|
|
int WorldMagModel::Geomag(WMMtype_CoordSpherical *CoordSpherical, WMMtype_CoordGeodetic *CoordGeodetic, WMMtype_GeoMagneticElements *GeoMagneticElements) |
|
/* |
|
The main subroutine that calls a sequence of WMM sub-functions to calculate the magnetic field elements for a single point. |
|
The function expects the model coefficients and point coordinates as input and returns the magnetic field elements and |
|
their rate of change. Though, this subroutine can be called successively to calculate a time series, profile or grid |
|
of magnetic field, these are better achieved by the subroutine WMM_Grid. |
|
|
|
INPUT: Ellip |
|
CoordSpherical |
|
CoordGeodetic |
|
TimedMagneticModel |
|
|
|
OUTPUT : GeoMagneticElements |
|
*/ |
|
{ |
|
WMMtype_MagneticResults MagneticResultsSph; |
|
WMMtype_MagneticResults MagneticResultsGeo; |
|
WMMtype_MagneticResults MagneticResultsSphVar; |
|
WMMtype_MagneticResults MagneticResultsGeoVar; |
|
WMMtype_LegendreFunction LegendreFunction; |
|
WMMtype_SphericalHarmonicVariables SphVariables; |
|
|
|
// Compute Spherical Harmonic variables |
|
ComputeSphericalHarmonicVariables(CoordSpherical, MagneticModel.nMax, &SphVariables); |
|
|
|
// Compute ALF |
|
if (AssociatedLegendreFunction(CoordSpherical, MagneticModel.nMax, &LegendreFunction) < 0) |
|
return -1; // error |
|
|
|
// Accumulate the spherical harmonic coefficients |
|
Summation(&LegendreFunction, &SphVariables, CoordSpherical, &MagneticResultsSph); |
|
|
|
// Sum the Secular Variation Coefficients |
|
SecVarSummation(&LegendreFunction, &SphVariables, CoordSpherical, &MagneticResultsSphVar); |
|
|
|
// Map the computed Magnetic fields to Geodeitic coordinates |
|
RotateMagneticVector(CoordSpherical, CoordGeodetic, &MagneticResultsSph, &MagneticResultsGeo); |
|
|
|
// Map the secular variation field components to Geodetic coordinates |
|
RotateMagneticVector(CoordSpherical, CoordGeodetic, &MagneticResultsSphVar, &MagneticResultsGeoVar); |
|
|
|
// Calculate the Geomagnetic elements, Equation 18 , WMM Technical report |
|
CalculateGeoMagneticElements(&MagneticResultsGeo, GeoMagneticElements); |
|
|
|
// Calculate the secular variation of each of the Geomagnetic elements |
|
CalculateSecularVariation(&MagneticResultsGeoVar, GeoMagneticElements); |
|
|
|
return 0; // OK |
|
} |
|
|
|
void WorldMagModel::ComputeSphericalHarmonicVariables(WMMtype_CoordSpherical *CoordSpherical, int nMax, WMMtype_SphericalHarmonicVariables *SphVariables) |
|
{ |
|
/* Computes Spherical variables |
|
Variables computed are (a/r)^(n+2), cos_m(lamda) and sin_m(lambda) for spherical harmonic |
|
summations. (Equations 10-12 in the WMM Technical Report) |
|
INPUT Ellip data structure with the following elements |
|
float a; semi-major axis of the ellipsoid |
|
float b; semi-minor axis of the ellipsoid |
|
float fla; flattening |
|
float epssq; first eccentricity squared |
|
float eps; first eccentricity |
|
float re; mean radius of ellipsoid |
|
CoordSpherical A data structure with the following elements |
|
float lambda; ( longitude) |
|
float phig; ( geocentric latitude ) |
|
float r; ( distance from the center of the ellipsoid) |
|
nMax integer ( Maxumum degree of spherical harmonic secular model)\ |
|
|
|
OUTPUT SphVariables Pointer to the data structure with the following elements |
|
float RelativeRadiusPower[WMM_MAX_MODEL_DEGREES+1]; [earth_reference_radius_km sph. radius ]^n |
|
float cos_mlambda[WMM_MAX_MODEL_DEGREES+1]; cp(m) - cosine of (mspherical coord. longitude) |
|
float sin_mlambda[WMM_MAX_MODEL_DEGREES+1]; sp(m) - sine of (mspherical coord. longitude) |
|
*/ |
|
double cos_lambda = cos(DEG2RAD(CoordSpherical->lambda)); |
|
double sin_lambda = sin(DEG2RAD(CoordSpherical->lambda)); |
|
|
|
/* for n = 0 ... model_order, compute (Radius of Earth / Spherica radius r)^(n+2) |
|
for n 1..nMax-1 (this is much faster than calling pow MAX_N+1 times). */ |
|
|
|
SphVariables->RelativeRadiusPower[0] = (Ellip.re / CoordSpherical->r) * (Ellip.re / CoordSpherical->r); |
|
for (int n = 1; n <= nMax; n++) |
|
SphVariables->RelativeRadiusPower[n] = SphVariables->RelativeRadiusPower[n - 1] * (Ellip.re / CoordSpherical->r); |
|
|
|
/* |
|
Compute cos(m*lambda), sin(m*lambda) for m = 0 ... nMax |
|
cos(a + b) = cos(a)*cos(b) - sin(a)*sin(b) |
|
sin(a + b) = cos(a)*sin(b) + sin(a)*cos(b) |
|
*/ |
|
SphVariables->cos_mlambda[0] = 1.0; |
|
SphVariables->sin_mlambda[0] = 0.0; |
|
|
|
SphVariables->cos_mlambda[1] = cos_lambda; |
|
SphVariables->sin_mlambda[1] = sin_lambda; |
|
for (int m = 2; m <= nMax; m++) |
|
{ |
|
SphVariables->cos_mlambda[m] = SphVariables->cos_mlambda[m - 1] * cos_lambda - SphVariables->sin_mlambda[m - 1] * sin_lambda; |
|
SphVariables->sin_mlambda[m] = SphVariables->cos_mlambda[m - 1] * sin_lambda + SphVariables->sin_mlambda[m - 1] * cos_lambda; |
|
} |
|
} |
|
|
|
int WorldMagModel::AssociatedLegendreFunction(WMMtype_CoordSpherical *CoordSpherical, int nMax, WMMtype_LegendreFunction *LegendreFunction) |
|
{ |
|
/* Computes all of the Schmidt-semi normalized associated Legendre |
|
functions up to degree nMax. If nMax <= 16, function WMM_PcupLow is used. |
|
Otherwise WMM_PcupHigh is called. |
|
INPUT CoordSpherical A data structure with the following elements |
|
float lambda; ( longitude) |
|
float phig; ( geocentric latitude ) |
|
float r; ( distance from the center of the ellipsoid) |
|
nMax integer ( Maxumum degree of spherical harmonic secular model) |
|
LegendreFunction Pointer to data structure with the following elements |
|
float *Pcup; ( pointer to store Legendre Function ) |
|
float *dPcup; ( pointer to store Derivative of Lagendre function ) |
|
|
|
OUTPUT LegendreFunction Calculated Legendre variables in the data structure |
|
*/ |
|
|
|
double sin_phi = sin(DEG2RAD(CoordSpherical->phig)); // sin (geocentric latitude) |
|
|
|
if (nMax <= 16 || (1 - fabs(sin_phi)) < 1.0e-10) /* If nMax is less tha 16 or at the poles */ |
|
PcupLow(LegendreFunction->Pcup, LegendreFunction->dPcup, sin_phi, nMax); |
|
else |
|
{ |
|
if (PcupHigh(LegendreFunction->Pcup, LegendreFunction->dPcup, sin_phi, nMax) < 0) |
|
return -1; // error |
|
} |
|
|
|
return 0; // OK |
|
} |
|
|
|
void WorldMagModel::Summation( WMMtype_LegendreFunction *LegendreFunction, |
|
WMMtype_SphericalHarmonicVariables *SphVariables, |
|
WMMtype_CoordSpherical *CoordSpherical, |
|
WMMtype_MagneticResults *MagneticResults) |
|
{ |
|
/* Computes Geomagnetic Field Elements X, Y and Z in Spherical coordinate system using spherical harmonic summation. |
|
|
|
The vector Magnetic field is given by -grad V, where V is Geomagnetic scalar potential |
|
The gradient in spherical coordinates is given by: |
|
|
|
dV ^ 1 dV ^ 1 dV ^ |
|
grad V = -- r + - -- t + -------- -- p |
|
dr r dt r sin(t) dp |
|
|
|
INPUT : LegendreFunction |
|
MagneticModel |
|
SphVariables |
|
CoordSpherical |
|
OUTPUT : MagneticResults |
|
|
|
Manoj Nair, June, 2009 Manoj.C.Nair@Noaa.Gov |
|
*/ |
|
|
|
MagneticResults->Bz = 0.0; |
|
MagneticResults->By = 0.0; |
|
MagneticResults->Bx = 0.0; |
|
|
|
for (int n = 1; n <= MagneticModel.nMax; n++) |
|
{ |
|
for (int m = 0; m <= n; m++) |
|
{ |
|
int index = (n * (n + 1) / 2 + m); |
|
|
|
/* nMax (n+2) n m m m |
|
Bz = -SUM (a/r) (n+1) SUM [g cos(m p) + h sin(m p)] P (sin(phi)) |
|
n=1 m=0 n n n */ |
|
/* Equation 12 in the WMM Technical report. Derivative with respect to radius.*/ |
|
MagneticResults->Bz -= |
|
SphVariables->RelativeRadiusPower[n] * |
|
(get_main_field_coeff_g(index) * |
|
SphVariables->cos_mlambda[m] + get_main_field_coeff_h(index) * SphVariables->sin_mlambda[m]) |
|
* (double)(n + 1) * LegendreFunction->Pcup[index]; |
|
|
|
/* 1 nMax (n+2) n m m m |
|
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi)) |
|
n=1 m=0 n n n */ |
|
/* Equation 11 in the WMM Technical report. Derivative with respect to longitude, divided by radius. */ |
|
MagneticResults->By += |
|
SphVariables->RelativeRadiusPower[n] * |
|
(get_main_field_coeff_g(index) * |
|
SphVariables->sin_mlambda[m] - get_main_field_coeff_h(index) * SphVariables->cos_mlambda[m]) |
|
* (double)(m) * LegendreFunction->Pcup[index]; |
|
/* nMax (n+2) n m m m |
|
Bx = - SUM (a/r) SUM [g cos(m p) + h sin(m p)] dP (sin(phi)) |
|
n=1 m=0 n n n */ |
|
/* Equation 10 in the WMM Technical report. Derivative with respect to latitude, divided by radius. */ |
|
|
|
MagneticResults->Bx -= |
|
SphVariables->RelativeRadiusPower[n] * |
|
(get_main_field_coeff_g(index) * |
|
SphVariables->cos_mlambda[m] + get_main_field_coeff_h(index) * SphVariables->sin_mlambda[m]) |
|
* LegendreFunction->dPcup[index]; |
|
|
|
} |
|
} |
|
|
|
double cos_phi = cos(DEG2RAD(CoordSpherical->phig)); |
|
if (fabs(cos_phi) > 1.0e-10) |
|
{ |
|
MagneticResults->By = MagneticResults->By / cos_phi; |
|
} |
|
else |
|
{ |
|
/* Special calculation for component - By - at Geographic poles. |
|
* If the user wants to avoid using this function, please make sure that |
|
* the latitude is not exactly +/-90. An option is to make use the function |
|
* WMM_CheckGeographicPoles. |
|
*/ |
|
SummationSpecial(SphVariables, CoordSpherical, MagneticResults); |
|
} |
|
} |
|
|
|
void WorldMagModel::SecVarSummation( WMMtype_LegendreFunction *LegendreFunction, |
|
WMMtype_SphericalHarmonicVariables *SphVariables, |
|
WMMtype_CoordSpherical *CoordSpherical, |
|
WMMtype_MagneticResults *MagneticResults) |
|
{ |
|
/*This Function sums the secular variation coefficients to get the secular variation of the Magnetic vector. |
|
INPUT : LegendreFunction |
|
MagneticModel |
|
SphVariables |
|
CoordSpherical |
|
OUTPUT : MagneticResults |
|
*/ |
|
|
|
MagneticModel.SecularVariationUsed = true; |
|
|
|
MagneticResults->Bz = 0.0; |
|
MagneticResults->By = 0.0; |
|
MagneticResults->Bx = 0.0; |
|
|
|
for (int n = 1; n <= MagneticModel.nMaxSecVar; n++) |
|
{ |
|
for (int m = 0; m <= n; m++) |
|
{ |
|
int index = (n * (n + 1) / 2 + m); |
|
|
|
/* nMax (n+2) n m m m |
|
Bz = -SUM (a/r) (n+1) SUM [g cos(m p) + h sin(m p)] P (sin(phi)) |
|
n=1 m=0 n n n */ |
|
/* Derivative with respect to radius.*/ |
|
MagneticResults->Bz -= |
|
SphVariables->RelativeRadiusPower[n] * |
|
(get_secular_var_coeff_g(index) * |
|
SphVariables->cos_mlambda[m] + get_secular_var_coeff_h(index) * SphVariables->sin_mlambda[m]) |
|
* (double)(n + 1) * LegendreFunction->Pcup[index]; |
|
|
|
/* 1 nMax (n+2) n m m m |
|
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi)) |
|
n=1 m=0 n n n */ |
|
/* Derivative with respect to longitude, divided by radius. */ |
|
MagneticResults->By += |
|
SphVariables->RelativeRadiusPower[n] * |
|
(get_secular_var_coeff_g(index) * |
|
SphVariables->sin_mlambda[m] - get_secular_var_coeff_h(index) * SphVariables->cos_mlambda[m]) |
|
* (double)(m) * LegendreFunction->Pcup[index]; |
|
/* nMax (n+2) n m m m |
|
Bx = - SUM (a/r) SUM [g cos(m p) + h sin(m p)] dP (sin(phi)) |
|
n=1 m=0 n n n */ |
|
/* Derivative with respect to latitude, divided by radius. */ |
|
|
|
MagneticResults->Bx -= |
|
SphVariables->RelativeRadiusPower[n] * |
|
(get_secular_var_coeff_g(index) * |
|
SphVariables->cos_mlambda[m] + get_secular_var_coeff_h(index) * SphVariables->sin_mlambda[m]) |
|
* LegendreFunction->dPcup[index]; |
|
} |
|
} |
|
|
|
double cos_phi = cos(DEG2RAD(CoordSpherical->phig)); |
|
if (fabs(cos_phi) > 1.0e-10) |
|
{ |
|
MagneticResults->By = MagneticResults->By / cos_phi; |
|
} |
|
else |
|
{ /* Special calculation for component By at Geographic poles */ |
|
SecVarSummationSpecial(SphVariables, CoordSpherical, MagneticResults); |
|
} |
|
} |
|
|
|
void WorldMagModel::RotateMagneticVector( WMMtype_CoordSpherical *CoordSpherical, |
|
WMMtype_CoordGeodetic *CoordGeodetic, |
|
WMMtype_MagneticResults *MagneticResultsSph, |
|
WMMtype_MagneticResults *MagneticResultsGeo) |
|
{ |
|
/* Rotate the Magnetic Vectors to Geodetic Coordinates |
|
Manoj Nair, June, 2009 Manoj.C.Nair@Noaa.Gov |
|
Equation 16, WMM Technical report |
|
|
|
INPUT : CoordSpherical : Data structure WMMtype_CoordSpherical with the following elements |
|
float lambda; ( longitude) |
|
float phig; ( geocentric latitude ) |
|
float r; ( distance from the center of the ellipsoid) |
|
|
|
CoordGeodetic : Data structure WMMtype_CoordGeodetic with the following elements |
|
float lambda; (longitude) |
|
float phi; ( geodetic latitude) |
|
float HeightAboveEllipsoid; (height above the ellipsoid (HaE) ) |
|
float HeightAboveGeoid;(height above the Geoid ) |
|
|
|
MagneticResultsSph : Data structure WMMtype_MagneticResults with the following elements |
|
float Bx; North |
|
float By; East |
|
float Bz; Down |
|
|
|
OUTPUT: MagneticResultsGeo Pointer to the data structure WMMtype_MagneticResults, with the following elements |
|
float Bx; North |
|
float By; East |
|
float Bz; Down |
|
*/ |
|
|
|
/* Difference between the spherical and Geodetic latitudes */ |
|
double Psi = DEG2RAD(CoordSpherical->phig - CoordGeodetic->phi); |
|
|
|
/* Rotate spherical field components to the Geodeitic system */ |
|
MagneticResultsGeo->Bz = MagneticResultsSph->Bx * sin(Psi) + MagneticResultsSph->Bz * cos(Psi); |
|
MagneticResultsGeo->Bx = MagneticResultsSph->Bx * cos(Psi) - MagneticResultsSph->Bz * sin(Psi); |
|
MagneticResultsGeo->By = MagneticResultsSph->By; |
|
} |
|
|
|
void WorldMagModel::CalculateGeoMagneticElements(WMMtype_MagneticResults *MagneticResultsGeo, WMMtype_GeoMagneticElements *GeoMagneticElements) |
|
{ |
|
/* Calculate all the Geomagnetic elements from X,Y and Z components |
|
INPUT MagneticResultsGeo Pointer to data structure with the following elements |
|
float Bx; ( North ) |
|
float By; ( East ) |
|
float Bz; ( Down ) |
|
OUTPUT GeoMagneticElements Pointer to data structure with the following elements |
|
float Decl; (Angle between the magnetic field vector and true north, positive east) |
|
float Incl; Angle between the magnetic field vector and the horizontal plane, positive down |
|
float F; Magnetic Field Strength |
|
float H; Horizontal Magnetic Field Strength |
|
float X; Northern component of the magnetic field vector |
|
float Y; Eastern component of the magnetic field vector |
|
float Z; Downward component of the magnetic field vector |
|
*/ |
|
|
|
GeoMagneticElements->X = MagneticResultsGeo->Bx; |
|
GeoMagneticElements->Y = MagneticResultsGeo->By; |
|
GeoMagneticElements->Z = MagneticResultsGeo->Bz; |
|
|
|
GeoMagneticElements->H = sqrt(MagneticResultsGeo->Bx * MagneticResultsGeo->Bx + MagneticResultsGeo->By * MagneticResultsGeo->By); |
|
GeoMagneticElements->F = sqrt(GeoMagneticElements->H * GeoMagneticElements->H + MagneticResultsGeo->Bz * MagneticResultsGeo->Bz); |
|
GeoMagneticElements->Decl = RAD2DEG(atan2(GeoMagneticElements->Y, GeoMagneticElements->X)); |
|
GeoMagneticElements->Incl = RAD2DEG(atan2(GeoMagneticElements->Z, GeoMagneticElements->H)); |
|
} |
|
|
|
void WorldMagModel::CalculateSecularVariation(WMMtype_MagneticResults *MagneticVariation, WMMtype_GeoMagneticElements *MagneticElements) |
|
{ |
|
/* This takes the Magnetic Variation in x, y, and z and uses it to calculate the secular variation of each of the Geomagnetic elements. |
|
INPUT MagneticVariation Data structure with the following elements |
|
float Bx; ( North ) |
|
float By; ( East ) |
|
float Bz; ( Down ) |
|
OUTPUT MagneticElements Pointer to the data structure with the following elements updated |
|
float Decldot; Yearly Rate of change in declination |
|
float Incldot; Yearly Rate of change in inclination |
|
float Fdot; Yearly rate of change in Magnetic field strength |
|
float Hdot; Yearly rate of change in horizontal field strength |
|
float Xdot; Yearly rate of change in the northern component |
|
float Ydot; Yearly rate of change in the eastern component |
|
float Zdot; Yearly rate of change in the downward component |
|
float GVdot;Yearly rate of chnage in grid variation |
|
*/ |
|
|
|
MagneticElements->Xdot = MagneticVariation->Bx; |
|
MagneticElements->Ydot = MagneticVariation->By; |
|
MagneticElements->Zdot = MagneticVariation->Bz; |
|
MagneticElements->Hdot = (MagneticElements->X * MagneticElements->Xdot + MagneticElements->Y * MagneticElements->Ydot) / MagneticElements->H; //See equation 19 in the WMM technical report |
|
MagneticElements->Fdot = |
|
(MagneticElements->X * MagneticElements->Xdot + |
|
MagneticElements->Y * MagneticElements->Ydot + MagneticElements->Z * MagneticElements->Zdot) / MagneticElements->F; |
|
MagneticElements->Decldot = |
|
180.0 / M_PI * (MagneticElements->X * MagneticElements->Ydot - |
|
MagneticElements->Y * MagneticElements->Xdot) / (MagneticElements->H * MagneticElements->H); |
|
MagneticElements->Incldot = |
|
180.0 / M_PI * (MagneticElements->H * MagneticElements->Zdot - |
|
MagneticElements->Z * MagneticElements->Hdot) / (MagneticElements->F * MagneticElements->F); |
|
MagneticElements->GVdot = MagneticElements->Decldot; |
|
} |
|
|
|
int WorldMagModel::PcupHigh(double *Pcup, double *dPcup, double x, int nMax) |
|
{ |
|
/* This function evaluates all of the Schmidt-semi normalized associated Legendre |
|
functions up to degree nMax. The functions are initially scaled by |
|
10^280 sin^m in order to minimize the effects of underflow at large m |
|
near the poles (see Holmes and Featherstone 2002, J. Geodesy, 76, 279-299). |
|
Note that this function performs the same operation as WMM_PcupLow. |
|
However this function also can be used for high degree (large nMax) models. |
|
|
|
Calling Parameters: |
|
INPUT |
|
nMax: Maximum spherical harmonic degree to compute. |
|
x: cos(colatitude) or sin(latitude). |
|
|
|
OUTPUT |
|
Pcup: A vector of all associated Legendgre polynomials evaluated at |
|
x up to nMax. The lenght must by greater or equal to (nMax+1)*(nMax+2)/2. |
|
dPcup: Derivative of Pcup(x) with respect to latitude |
|
Notes: |
|
|
|
Adopted from the FORTRAN code written by Mark Wieczorek September 25, 2005. |
|
|
|
Manoj Nair, Nov, 2009 Manoj.C.Nair@Noaa.Gov |
|
|
|
Change from the previous version |
|
The prevous version computes the derivatives as |
|
dP(n,m)(x)/dx, where x = sin(latitude) (or cos(colatitude) ). |
|
However, the WMM Geomagnetic routines requires dP(n,m)(x)/dlatitude. |
|
Hence the derivatives are multiplied by sin(latitude). |
|
Removed the options for CS phase and normalizations. |
|
|
|
Note: In geomagnetism, the derivatives of ALF are usually found with |
|
respect to the colatitudes. Here the derivatives are found with respect |
|
to the latitude. The difference is a sign reversal for the derivative of |
|
the Associated Legendre Functions. |
|
|
|
The derivates can't be computed for latitude = |90| degrees. |
|
*/ |
|
double f1[WMM_NUMPCUP]; |
|
double f2[WMM_NUMPCUP]; |
|
double PreSqr[WMM_NUMPCUP]; |
|
int m; |
|
|
|
if (fabs(x) == 1.0) |
|
{ |
|
// printf("Error in PcupHigh: derivative cannot be calculated at poles\n"); |
|
return -2; |
|
} |
|
|
|
double scalef = 1.0e-280; |
|
|
|
for (int n = 0; n <= 2 * nMax + 1; ++n) |
|
PreSqr[n] = sqrt((double)(n)); |
|
|
|
int k = 2; |
|
|
|
for (int n = 2; n <= nMax; n++) |
|
{ |
|
k = k + 1; |
|
f1[k] = (double)(2 * n - 1) / n; |
|
f2[k] = (double)(n - 1) / n; |
|
for (int m = 1; m <= n - 2; m++) |
|
{ |
|
k = k + 1; |
|
f1[k] = (double)(2 * n - 1) / PreSqr[n + m] / PreSqr[n - m]; |
|
f2[k] = PreSqr[n - m - 1] * PreSqr[n + m - 1] / PreSqr[n + m] / PreSqr[n - m]; |
|
} |
|
k = k + 2; |
|
} |
|
|
|
/*z = sin (geocentric latitude) */ |
|
double z = sqrt((1.0 - x) * (1.0 + x)); |
|
double pm2 = 1.0; |
|
Pcup[0] = 1.0; |
|
dPcup[0] = 0.0; |
|
if (nMax == 0) |
|
return -3; |
|
double pm1 = x; |
|
Pcup[1] = pm1; |
|
dPcup[1] = z; |
|
k = 1; |
|
|
|
for (int n = 2; n <= nMax; n++) |
|
{ |
|
k = k + n; |
|
double plm = f1[k] * x * pm1 - f2[k] * pm2; |
|
Pcup[k] = plm; |
|
dPcup[k] = (double)(n) * (pm1 - x * plm) / z; |
|
pm2 = pm1; |
|
pm1 = plm; |
|
} |
|
|
|
double pmm = PreSqr[2] * scalef; |
|
double rescalem = 1.0 / scalef; |
|
int kstart = 0; |
|
|
|
for (m = 1; m <= nMax - 1; ++m) |
|
{ |
|
rescalem = rescalem * z; |
|
|
|
/* Calculate Pcup(m,m) */ |
|
kstart = kstart + m + 1; |
|
pmm = pmm * PreSqr[2 * m + 1] / PreSqr[2 * m]; |
|
Pcup[kstart] = pmm * rescalem / PreSqr[2 * m + 1]; |
|
dPcup[kstart] = -((double)(m) * x * Pcup[kstart] / z); |
|
pm2 = pmm / PreSqr[2 * m + 1]; |
|
/* Calculate Pcup(m+1,m) */ |
|
k = kstart + m + 1; |
|
pm1 = x * PreSqr[2 * m + 1] * pm2; |
|
Pcup[k] = pm1 * rescalem; |
|
dPcup[k] = ((pm2 * rescalem) * PreSqr[2 * m + 1] - x * (double)(m + 1) * Pcup[k]) / z; |
|
/* Calculate Pcup(n,m) */ |
|
for (int n = m + 2; n <= nMax; ++n) |
|
{ |
|
k = k + n; |
|
double plm = x * f1[k] * pm1 - f2[k] * pm2; |
|
Pcup[k] = plm * rescalem; |
|
dPcup[k] = (PreSqr[n + m] * PreSqr[n - m] * (pm1 * rescalem) - (double)(n) * x * Pcup[k]) / z; |
|
pm2 = pm1; |
|
pm1 = plm; |
|
} |
|
} |
|
|
|
/* Calculate Pcup(nMax,nMax) */ |
|
rescalem = rescalem * z; |
|
kstart = kstart + m + 1; |
|
pmm = pmm / PreSqr[2 * nMax]; |
|
Pcup[kstart] = pmm * rescalem; |
|
dPcup[kstart] = -(double)(nMax) * x * Pcup[kstart] / z; |
|
|
|
// ********* |
|
|
|
return 0; // OK |
|
} |
|
|
|
void WorldMagModel::PcupLow(double *Pcup, double *dPcup, double x, int nMax) |
|
{ |
|
/* This function evaluates all of the Schmidt-semi normalized associated Legendre functions up to degree nMax. |
|
|
|
Calling Parameters: |
|
INPUT |
|
nMax: Maximum spherical harmonic degree to compute. |
|
x: cos(colatitude) or sin(latitude). |
|
|
|
OUTPUT |
|
Pcup: A vector of all associated Legendgre polynomials evaluated at |
|
x up to nMax. |
|
dPcup: Derivative of Pcup(x) with respect to latitude |
|
|
|
Notes: Overflow may occur if nMax > 20 , especially for high-latitudes. |
|
Use WMM_PcupHigh for large nMax. |
|
|
|
Writted by Manoj Nair, June, 2009 . Manoj.C.Nair@Noaa.Gov. |
|
|
|
Note: In geomagnetism, the derivatives of ALF are usually found with |
|
respect to the colatitudes. Here the derivatives are found with respect |
|
to the latitude. The difference is a sign reversal for the derivative of |
|
the Associated Legendre Functions. |
|
*/ |
|
|
|
double schmidtQuasiNorm[WMM_NUMPCUP]; |
|
|
|
Pcup[0] = 1.0; |
|
dPcup[0] = 0.0; |
|
|
|
/*sin (geocentric latitude) - sin_phi */ |
|
double z = sqrt((1.0 - x) * (1.0 + x)); |
|
|
|
/* First, Compute the Gauss-normalized associated Legendre functions */ |
|
for (int n = 1; n <= nMax; n++) |
|
{ |
|
for (int m = 0; m <= n; m++) |
|
{ |
|
int index = (n * (n + 1) / 2 + m); |
|
if (n == m) |
|
{ |
|
int index1 = (n - 1) * n / 2 + m - 1; |
|
Pcup[index] = z * Pcup[index1]; |
|
dPcup[index] = z * dPcup[index1] + x * Pcup[index1]; |
|
} |
|
else |
|
if (n == 1 && m == 0) |
|
{ |
|
int index1 = (n - 1) * n / 2 + m; |
|
Pcup[index] = x * Pcup[index1]; |
|
dPcup[index] = x * dPcup[index1] - z * Pcup[index1]; |
|
} |
|
else |
|
if (n > 1 && n != m) |
|
{ |
|
int index1 = (n - 2) * (n - 1) / 2 + m; |
|
int index2 = (n - 1) * n / 2 + m; |
|
if (m > n - 2) |
|
{ |
|
Pcup[index] = x * Pcup[index2]; |
|
dPcup[index] = x * dPcup[index2] - z * Pcup[index2]; |
|
} |
|
else |
|
{ |
|
double k = (double)(((n - 1) * (n - 1)) - (m * m)) / (double)((2 * n - 1) * (2 * n - 3)); |
|
Pcup[index] = x * Pcup[index2] - k * Pcup[index1]; |
|
dPcup[index] = x * dPcup[index2] - z * Pcup[index2] - k * dPcup[index1]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/*Compute the ration between the Gauss-normalized associated Legendre |
|
functions and the Schmidt quasi-normalized version. This is equivalent to |
|
sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! */ |
|
|
|
schmidtQuasiNorm[0] = 1.0; |
|
for (int n = 1; n <= nMax; n++) |
|
{ |
|
int index = (n * (n + 1) / 2); |
|
int index1 = (n - 1) * n / 2; |
|
/* for m = 0 */ |
|
schmidtQuasiNorm[index] = schmidtQuasiNorm[index1] * (double)(2 * n - 1) / (double)n; |
|
|
|
for (int m = 1; m <= n; m++) |
|
{ |
|
index = (n * (n + 1) / 2 + m); |
|
index1 = (n * (n + 1) / 2 + m - 1); |
|
schmidtQuasiNorm[index] = schmidtQuasiNorm[index1] * sqrt((double)((n - m + 1) * (m == 1 ? 2 : 1)) / (double)(n + m)); |
|
} |
|
} |
|
|
|
/* Converts the Gauss-normalized associated Legendre |
|
functions to the Schmidt quasi-normalized version using pre-computed |
|
relation stored in the variable schmidtQuasiNorm */ |
|
|
|
for (int n = 1; n <= nMax; n++) |
|
{ |
|
for (int m = 0; m <= n; m++) |
|
{ |
|
int index = (n * (n + 1) / 2 + m); |
|
Pcup[index] = Pcup[index] * schmidtQuasiNorm[index]; |
|
dPcup[index] = -dPcup[index] * schmidtQuasiNorm[index]; |
|
/* The sign is changed since the new WMM routines use derivative with respect to latitude insted of co-latitude */ |
|
} |
|
} |
|
} |
|
|
|
void WorldMagModel::SummationSpecial(WMMtype_SphericalHarmonicVariables *SphVariables, WMMtype_CoordSpherical *CoordSpherical, WMMtype_MagneticResults *MagneticResults) |
|
{ |
|
/* Special calculation for the component By at Geographic poles. |
|
Manoj Nair, June, 2009 manoj.c.nair@noaa.gov |
|
INPUT: MagneticModel |
|
SphVariables |
|
CoordSpherical |
|
OUTPUT: MagneticResults |
|
CALLS : none |
|
See Section 1.4, "SINGULARITIES AT THE GEOGRAPHIC POLES", WMM Technical report |
|
*/ |
|
|
|
double PcupS[WMM_NUMPCUPS]; |
|
|
|
PcupS[0] = 1; |
|
double schmidtQuasiNorm1 = 1.0; |
|
|
|
MagneticResults->By = 0.0; |
|
double sin_phi = sin(DEG2RAD(CoordSpherical->phig)); |
|
|
|
for (int n = 1; n <= MagneticModel.nMax; n++) |
|
{ |
|
/*Compute the ration between the Gauss-normalized associated Legendre |
|
functions and the Schmidt quasi-normalized version. This is equivalent to |
|
sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! */ |
|
|
|
int index = (n * (n + 1) / 2 + 1); |
|
double schmidtQuasiNorm2 = schmidtQuasiNorm1 * (double)(2 * n - 1) / (double)n; |
|
double schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt((double)(n * 2) / (double)(n + 1)); |
|
schmidtQuasiNorm1 = schmidtQuasiNorm2; |
|
if (n == 1) |
|
{ |
|
PcupS[n] = PcupS[n - 1]; |
|
} |
|
else |
|
{ |
|
double k = (double)(((n - 1) * (n - 1)) - 1) / (double)((2 * n - 1) * (2 * n - 3)); |
|
PcupS[n] = sin_phi * PcupS[n - 1] - k * PcupS[n - 2]; |
|
} |
|
|
|
/* 1 nMax (n+2) n m m m |
|
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi)) |
|
n=1 m=0 n n n */ |
|
/* Equation 11 in the WMM Technical report. Derivative with respect to longitude, divided by radius. */ |
|
|
|
MagneticResults->By += |
|
SphVariables->RelativeRadiusPower[n] * |
|
(get_main_field_coeff_g(index) * |
|
SphVariables->sin_mlambda[1] - get_main_field_coeff_h(index) * SphVariables->cos_mlambda[1]) |
|
* PcupS[n] * schmidtQuasiNorm3; |
|
} |
|
} |
|
|
|
void WorldMagModel::SecVarSummationSpecial(WMMtype_SphericalHarmonicVariables *SphVariables, WMMtype_CoordSpherical *CoordSpherical, WMMtype_MagneticResults *MagneticResults) |
|
{ |
|
/*Special calculation for the secular variation summation at the poles. |
|
|
|
INPUT: MagneticModel |
|
SphVariables |
|
CoordSpherical |
|
OUTPUT: MagneticResults |
|
*/ |
|
|
|
double PcupS[WMM_NUMPCUPS]; |
|
|
|
PcupS[0] = 1; |
|
double schmidtQuasiNorm1 = 1.0; |
|
|
|
MagneticResults->By = 0.0; |
|
double sin_phi = sin(DEG2RAD(CoordSpherical->phig)); |
|
|
|
for (int n = 1; n <= MagneticModel.nMaxSecVar; n++) |
|
{ |
|
int index = (n * (n + 1) / 2 + 1); |
|
double schmidtQuasiNorm2 = schmidtQuasiNorm1 * (double)(2 * n - 1) / (double)n; |
|
double schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt((double)(n * 2) / (double)(n + 1)); |
|
schmidtQuasiNorm1 = schmidtQuasiNorm2; |
|
if (n == 1) |
|
{ |
|
PcupS[n] = PcupS[n - 1]; |
|
} |
|
else |
|
{ |
|
double k = (double)(((n - 1) * (n - 1)) - 1) / (double)((2 * n - 1) * (2 * n - 3)); |
|
PcupS[n] = sin_phi * PcupS[n - 1] - k * PcupS[n - 2]; |
|
} |
|
|
|
/* 1 nMax (n+2) n m m m |
|
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi)) |
|
n=1 m=0 n n n */ |
|
/* Derivative with respect to longitude, divided by radius. */ |
|
|
|
MagneticResults->By += |
|
SphVariables->RelativeRadiusPower[n] * |
|
(get_secular_var_coeff_g(index) * |
|
SphVariables->sin_mlambda[1] - get_secular_var_coeff_h(index) * SphVariables->cos_mlambda[1]) |
|
* PcupS[n] * schmidtQuasiNorm3; |
|
} |
|
} |
|
|
|
// brief Comput the MainFieldCoeffH accounting for the date |
|
double WorldMagModel::get_main_field_coeff_g(int index) |
|
{ |
|
if (index >= WMM_NUMTERMS) |
|
return 0; |
|
|
|
double coeff = CoeffFile[index][2]; |
|
|
|
int a = MagneticModel.nMaxSecVar; |
|
int b = (a * (a + 1) / 2 + a); |
|
for (int n = 1; n <= MagneticModel.nMax; n++) |
|
{ |
|
for (int m = 0; m <= n; m++) |
|
{ |
|
int sum_index = (n * (n + 1) / 2 + m); |
|
|
|
/* Hacky for now, will solve for which conditions need summing analytically */ |
|
if (sum_index != index) |
|
continue; |
|
|
|
if (index <= b) |
|
coeff += (decimal_date - MagneticModel.epoch) * get_secular_var_coeff_g(sum_index); |
|
} |
|
} |
|
|
|
return coeff; |
|
} |
|
|
|
double WorldMagModel::get_main_field_coeff_h(int index) |
|
{ |
|
if (index >= WMM_NUMTERMS) |
|
return 0; |
|
|
|
double coeff = CoeffFile[index][3]; |
|
|
|
int a = MagneticModel.nMaxSecVar; |
|
int b = (a * (a + 1) / 2 + a); |
|
for (int n = 1; n <= MagneticModel.nMax; n++) |
|
{ |
|
for (int m = 0; m <= n; m++) |
|
{ |
|
int sum_index = (n * (n + 1) / 2 + m); |
|
|
|
/* Hacky for now, will solve for which conditions need summing analytically */ |
|
if (sum_index != index) |
|
continue; |
|
|
|
if (index <= b) |
|
coeff += (decimal_date - MagneticModel.epoch) * get_secular_var_coeff_h(sum_index); |
|
} |
|
} |
|
|
|
return coeff; |
|
} |
|
|
|
double WorldMagModel::get_secular_var_coeff_g(int index) |
|
{ |
|
if (index >= WMM_NUMTERMS) |
|
return 0; |
|
|
|
return CoeffFile[index][4]; |
|
} |
|
|
|
double WorldMagModel::get_secular_var_coeff_h(int index) |
|
{ |
|
if (index >= WMM_NUMTERMS) |
|
return 0; |
|
|
|
return CoeffFile[index][5]; |
|
} |
|
|
|
int WorldMagModel::DateToYear(int month, int day, int year) |
|
{ |
|
// Converts a given calendar date into a decimal year |
|
|
|
int temp = 0; // Total number of days |
|
int MonthDays[13] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; |
|
int ExtraDay = 0; |
|
|
|
if ((year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)) |
|
ExtraDay = 1; |
|
MonthDays[2] += ExtraDay; |
|
|
|
/******************Validation********************************/ |
|
|
|
if (month <= 0 || month > 12) |
|
return -1; // error |
|
|
|
if (day <= 0 || day > MonthDays[month]) |
|
return -2; // error |
|
|
|
/****************Calculation of t***************************/ |
|
for (int i = 1; i <= month; i++) |
|
temp += MonthDays[i - 1]; |
|
temp += day; |
|
|
|
decimal_date = year + (temp - 1) / (365.0 + ExtraDay); |
|
|
|
return 0; // OK |
|
} |
|
|
|
void WorldMagModel::GeodeticToSpherical(WMMtype_CoordGeodetic *CoordGeodetic, WMMtype_CoordSpherical *CoordSpherical) |
|
{ |
|
// Converts Geodetic coordinates to Spherical coordinates |
|
// Convert geodetic coordinates, (defined by the WGS-84 |
|
// reference ellipsoid), to Earth Centered Earth Fixed Cartesian |
|
// coordinates, and then to spherical coordinates. |
|
|
|
double CosLat = cos(DEG2RAD(CoordGeodetic->phi)); |
|
double SinLat = sin(DEG2RAD(CoordGeodetic->phi)); |
|
|
|
// compute the local radius of curvature on the WGS-84 reference ellipsoid |
|
double rc = Ellip.a / sqrt(1.0 - Ellip.epssq * SinLat * SinLat); |
|
|
|
// compute ECEF Cartesian coordinates of specified point (for longitude=0) |
|
double xp = (rc + CoordGeodetic->HeightAboveEllipsoid) * CosLat; |
|
double zp = (rc * (1.0 - Ellip.epssq) + CoordGeodetic->HeightAboveEllipsoid) * SinLat; |
|
|
|
// compute spherical radius and angle lambda and phi of specified point |
|
CoordSpherical->r = sqrt(xp * xp + zp * zp); |
|
CoordSpherical->phig = RAD2DEG(asin(zp / CoordSpherical->r)); // geocentric latitude |
|
CoordSpherical->lambda = CoordGeodetic->lambda; // longitude |
|
} |
|
|
|
}
|
|
|