地面站终端 App
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

724 lines
28 KiB

/*=====================================================================
QGroundControl Open Source Ground Control Station
(c) 2009, 2010 QGROUNDCONTROL PROJECT <http://www.qgroundcontrol.org>
This file is part of the QGROUNDCONTROL project
QGROUNDCONTROL is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
QGROUNDCONTROL is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with QGROUNDCONTROL. If not, see <http://www.gnu.org/licenses/>.
======================================================================*/
/**
* @file
* @brief Definition of Unmanned Aerial Vehicle object
*
* @author Lorenz Meier <mavteam@student.ethz.ch>
*
*/
#ifndef _UAS_H_
#define _UAS_H_
#include "UASInterface.h"
#include <MAVLinkProtocol.h>
#include <QVector3D>
#include "QGCMAVLink.h"
#include "QGCHilLink.h"
#include "QGCFlightGearLink.h"
#include "QGCJSBSimLink.h"
#include "QGCXPlaneLink.h"
/**
* @brief A generic MAVLINK-connected MAV/UAV
*
* This class represents one vehicle. It can be used like the real vehicle, e.g. a call to halt()
* will automatically send the appropriate messages to the vehicle. The vehicle state will also be
* automatically updated by the comm architecture, so when writing code to e.g. control the vehicle
* no knowledge of the communication infrastructure is needed.
*/
class UAS : public UASInterface
{
Q_OBJECT
public:
UAS(MAVLinkProtocol* protocol, int id = 0);
~UAS();
enum BatteryType
{
NICD = 0,
NIMH = 1,
LIION = 2,
LIPOLY = 3,
LIFE = 4,
AGZN = 5
}; ///< The type of battery used
static const int lipoFull = 4.2f; ///< 100% charged voltage
static const int lipoEmpty = 3.5f; ///< Discharged voltage
/* MANAGEMENT */
/** @brief The name of the robot */
QString getUASName(void) const;
/** @brief Get short state */
const QString& getShortState() const;
/** @brief Get short mode */
const QString& getShortMode() const;
/** @brief Translate from mode id to text */
static QString getShortModeTextFor(int id);
/** @brief Translate from mode id to audio text */
static QString getAudioModeTextFor(int id);
/** @brief Get the unique system id */
int getUASID() const;
/** @brief Get the airframe */
int getAirframe() const
{
return airframe;
}
/** @brief Get the components */
QMap<int, QString> getComponents();
/** @brief The time interval the robot is switched on */
quint64 getUptime() const;
/** @brief Get the status flag for the communication */
int getCommunicationStatus() const;
/** @brief Add one measurement and get low-passed voltage */
float filterVoltage(float value) const;
/** @brief Get the links associated with this robot */
QList<LinkInterface*>* getLinks();
double getLocalX() const
{
return localX;
}
double getLocalY() const
{
return localY;
}
double getLocalZ() const
{
return localZ;
}
double getLatitude() const
{
return latitude;
}
double getLongitude() const
{
return longitude;
}
double getAltitude() const
{
return altitude;
}
virtual bool localPositionKnown() const
{
return isLocalPositionKnown;
}
virtual bool globalPositionKnown() const
{
return isGlobalPositionKnown;
}
double getRoll() const
{
return roll;
}
double getPitch() const
{
return pitch;
}
double getYaw() const
{
return yaw;
}
bool getSelected() const;
QVector3D getNedPosGlobalOffset() const
{
return nedPosGlobalOffset;
}
QVector3D getNedAttGlobalOffset() const
{
return nedAttGlobalOffset;
}
#if defined(QGC_PROTOBUF_ENABLED) && defined(QGC_USE_PIXHAWK_MESSAGES)
px::GLOverlay getOverlay()
{
QMutexLocker locker(&overlayMutex);
return overlay;
}
px::GLOverlay getOverlay(qreal& receivedTimestamp)
{
receivedTimestamp = receivedOverlayTimestamp;
QMutexLocker locker(&overlayMutex);
return overlay;
}
px::ObstacleList getObstacleList() {
QMutexLocker locker(&obstacleListMutex);
return obstacleList;
}
px::ObstacleList getObstacleList(qreal& receivedTimestamp) {
receivedTimestamp = receivedObstacleListTimestamp;
QMutexLocker locker(&obstacleListMutex);
return obstacleList;
}
px::Path getPath() {
QMutexLocker locker(&pathMutex);
return path;
}
px::Path getPath(qreal& receivedTimestamp) {
receivedTimestamp = receivedPathTimestamp;
QMutexLocker locker(&pathMutex);
return path;
}
px::PointCloudXYZRGB getPointCloud() {
QMutexLocker locker(&pointCloudMutex);
return pointCloud;
}
px::PointCloudXYZRGB getPointCloud(qreal& receivedTimestamp) {
receivedTimestamp = receivedPointCloudTimestamp;
QMutexLocker locker(&pointCloudMutex);
return pointCloud;
}
px::RGBDImage getRGBDImage() {
QMutexLocker locker(&rgbdImageMutex);
return rgbdImage;
}
px::RGBDImage getRGBDImage(qreal& receivedTimestamp) {
receivedTimestamp = receivedRGBDImageTimestamp;
QMutexLocker locker(&rgbdImageMutex);
return rgbdImage;
}
#endif
friend class UASWaypointManager;
protected: //COMMENTS FOR TEST UNIT
int uasId; ///< Unique system ID
unsigned char type; ///< UAS type (from type enum)
quint64 startTime; ///< The time the UAS was switched on
CommStatus commStatus; ///< Communication status
QString name; ///< Human-friendly name of the vehicle, e.g. bravo
int autopilot; ///< Type of the Autopilot: -1: None, 0: Generic, 1: PIXHAWK, 2: SLUGS, 3: Ardupilot (up to 15 types), defined in MAV_AUTOPILOT_TYPE ENUM
QList<LinkInterface*>* links; ///< List of links this UAS can be reached by
QList<int> unknownPackets; ///< Packet IDs which are unknown and have been received
MAVLinkProtocol* mavlink; ///< Reference to the MAVLink instance
BatteryType batteryType; ///< The battery type
int cells; ///< Number of cells
UASWaypointManager waypointManager;
QList<double> actuatorValues;
QList<QString> actuatorNames;
QList<double> motorValues;
QList<QString> motorNames;
QMap<int, QString> components; ///< IDs and names of all detected onboard components
double thrustSum; ///< Sum of forward/up thrust of all thrust actuators, in Newtons
double thrustMax; ///< Maximum forward/up thrust of this vehicle, in Newtons
// Battery stats
float fullVoltage; ///< Voltage of the fully charged battery (100%)
float emptyVoltage; ///< Voltage of the empty battery (0%)
float startVoltage; ///< Voltage at system start
float tickVoltage; ///< Voltage where 0.1 V ticks are told
float lastTickVoltageValue; ///< The last voltage where a tick was announced
float tickLowpassVoltage; ///< Lowpass-filtered voltage for the tick announcement
float warnVoltage; ///< Voltage where QGC will start to warn about low battery
float warnLevelPercent; ///< Warning level, in percent
double currentVoltage; ///< Voltage currently measured
float lpVoltage; ///< Low-pass filtered voltage
bool batteryRemainingEstimateEnabled; ///< If the estimate is enabled, QGC will try to estimate the remaining battery life
float chargeLevel; ///< Charge level of battery, in percent
int timeRemaining; ///< Remaining time calculated based on previous and current
uint8_t mode; ///< The current mode of the MAV
uint32_t custom_mode; ///< The current mode of the MAV
int status; ///< The current status of the MAV
uint32_t navMode; ///< The current navigation mode of the MAV
quint64 onboardTimeOffset;
bool controlRollManual; ///< status flag, true if roll is controlled manually
bool controlPitchManual; ///< status flag, true if pitch is controlled manually
bool controlYawManual; ///< status flag, true if yaw is controlled manually
bool controlThrustManual; ///< status flag, true if thrust is controlled manually
double manualRollAngle; ///< Roll angle set by human pilot (radians)
double manualPitchAngle; ///< Pitch angle set by human pilot (radians)
double manualYawAngle; ///< Yaw angle set by human pilot (radians)
double manualThrust; ///< Thrust set by human pilot (radians)
float receiveDropRate; ///< Percentage of packets that were dropped on the MAV's receiving link (from GCS and other MAVs)
float sendDropRate; ///< Percentage of packets that were not received from the MAV by the GCS
bool lowBattAlarm; ///< Switch if battery is low
bool positionLock; ///< Status if position information is available or not
double localX;
double localY;
double localZ;
double latitude; ///< Global latitude as estimated by position estimator
double longitude; ///< Global longitude as estimated by position estimator
double altitude; ///< Global altitude as estimated by position estimator
bool globalEstimatorActive; ///< Global position estimator present, do not fall back to GPS raw for position
double latitude_gps; ///< Global latitude as estimated by raw GPS
double longitude_gps; ///< Global longitude as estimated by raw GPS
double altitude_gps; ///< Global altitude as estimated by raw GPS
double speedX; ///< True speed in X axis
double speedY; ///< True speed in Y axis
double speedZ; ///< True speed in Z axis
double roll;
double pitch;
double yaw;
quint64 lastHeartbeat; ///< Time of the last heartbeat message
QTimer* statusTimeout; ///< Timer for various status timeouts
int imageSize; ///< Image size being transmitted (bytes)
int imagePackets; ///< Number of data packets being sent for this image
int imagePacketsArrived; ///< Number of data packets recieved
int imagePayload; ///< Payload size per transmitted packet (bytes). Standard is 254, and decreases when image resolution increases.
int imageQuality; ///< Quality of the transmitted image (percentage)
int imageType; ///< Type of the transmitted image (BMP, PNG, JPEG, RAW 8 bit, RAW 32 bit)
int imageWidth; ///< Width of the image stream
int imageHeight; ///< Width of the image stream
QByteArray imageRecBuffer; ///< Buffer for the incoming bytestream
QImage image; ///< Image data of last completely transmitted image
quint64 imageStart;
#if defined(QGC_PROTOBUF_ENABLED) && defined(QGC_USE_PIXHAWK_MESSAGES)
px::GLOverlay overlay;
QMutex overlayMutex;
qreal receivedOverlayTimestamp;
px::ObstacleList obstacleList;
QMutex obstacleListMutex;
qreal receivedObstacleListTimestamp;
px::Path path;
QMutex pathMutex;
qreal receivedPathTimestamp;
px::PointCloudXYZRGB pointCloud;
QMutex pointCloudMutex;
qreal receivedPointCloudTimestamp;
px::RGBDImage rgbdImage;
QMutex rgbdImageMutex;
qreal receivedRGBDImageTimestamp;
#endif
QMap<int, QMap<QString, QVariant>* > parameters; ///< All parameters
bool paramsOnceRequested; ///< If the parameter list has been read at least once
int airframe; ///< The airframe type
bool attitudeKnown; ///< True if attitude was received, false else
QGCUASParamManager* paramManager; ///< Parameter manager class
QString shortStateText; ///< Short textual state description
QString shortModeText; ///< Short textual mode description
bool attitudeStamped; ///< Should arriving data be timestamped with the last attitude? This helps with broken system time clocks on the MAV
quint64 lastAttitude; ///< Timestamp of last attitude measurement
QGCHilLink* simulation; ///< Hardware in the loop simulation link
bool isLocalPositionKnown; ///< If the local position has been received for this MAV
bool isGlobalPositionKnown; ///< If the global position has been received for this MAV
bool systemIsArmed; ///< If the system is armed
QVector3D nedPosGlobalOffset; ///< Offset between the system's NED position measurements and the swarm / global 0/0/0 origin
QVector3D nedAttGlobalOffset; ///< Offset between the system's NED position measurements and the swarm / global 0/0/0 origin
public:
/** @brief Set the current battery type */
void setBattery(BatteryType type, int cells);
/** @brief Estimate how much flight time is remaining */
int calculateTimeRemaining();
/** @brief Get the current charge level */
float getChargeLevel();
/** @brief Get the human-readable status message for this code */
void getStatusForCode(int statusCode, QString& uasState, QString& stateDescription);
/** @brief Get the human-readable navigation mode translation for this mode */
QString getNavModeText(int mode);
/** @brief Check if vehicle is in autonomous mode */
bool isAuto();
/** @brief Check if vehicle is armed */
bool isArmed() const { return systemIsArmed; }
UASWaypointManager* getWaypointManager() {
return &waypointManager;
}
/** @brief Get reference to the param manager **/
QGCUASParamManager* getParamManager() const {
return paramManager;
}
/** @brief Get the HIL simulation */
QGCHilLink* getHILSimulation() const {
return simulation;
}
// TODO Will be removed
/** @brief Set reference to the param manager **/
void setParamManager(QGCUASParamManager* manager) {
paramManager = manager;
}
int getSystemType();
QString getSystemTypeName()
{
switch(type)
{
case MAV_TYPE_GENERIC:
return "GENERIC";
break;
case MAV_TYPE_FIXED_WING:
return "FIXED_WING";
break;
case MAV_TYPE_QUADROTOR:
return "QUADROTOR";
break;
case MAV_TYPE_COAXIAL:
return "COAXIAL";
break;
case MAV_TYPE_HELICOPTER:
return "HELICOPTER";
break;
case MAV_TYPE_ANTENNA_TRACKER:
return "ANTENNA_TRACKER";
break;
case MAV_TYPE_GCS:
return "GCS";
break;
case MAV_TYPE_AIRSHIP:
return "AIRSHIP";
break;
case MAV_TYPE_FREE_BALLOON:
return "FREE_BALLOON";
break;
case MAV_TYPE_ROCKET:
return "ROCKET";
break;
case MAV_TYPE_GROUND_ROVER:
return "GROUND_ROVER";
break;
case MAV_TYPE_SURFACE_BOAT:
return "BOAT";
break;
case MAV_TYPE_SUBMARINE:
return "SUBMARINE";
break;
case MAV_TYPE_HEXAROTOR:
return "HEXAROTOR";
break;
case MAV_TYPE_OCTOROTOR:
return "OCTOROTOR";
break;
case MAV_TYPE_TRICOPTER:
return "TRICOPTER";
break;
case MAV_TYPE_FLAPPING_WING:
return "FLAPPING_WING";
break;
default:
return "";
break;
}
}
QImage getImage();
void requestImage();
int getAutopilotType(){
return autopilot;
}
QString getAutopilotTypeName()
{
switch (autopilot)
{
case MAV_AUTOPILOT_GENERIC:
return "GENERIC";
break;
case MAV_AUTOPILOT_PIXHAWK:
return "PIXHAWK";
break;
case MAV_AUTOPILOT_SLUGS:
return "SLUGS";
break;
case MAV_AUTOPILOT_ARDUPILOTMEGA:
return "ARDUPILOTMEGA";
break;
case MAV_AUTOPILOT_OPENPILOT:
return "OPENPILOT";
break;
case MAV_AUTOPILOT_GENERIC_WAYPOINTS_ONLY:
return "GENERIC_WAYPOINTS_ONLY";
break;
case MAV_AUTOPILOT_GENERIC_WAYPOINTS_AND_SIMPLE_NAVIGATION_ONLY:
return "GENERIC_MISSION_NAVIGATION_ONLY";
break;
case MAV_AUTOPILOT_GENERIC_MISSION_FULL:
return "GENERIC_MISSION_FULL";
break;
case MAV_AUTOPILOT_INVALID:
return "NO AP";
break;
case MAV_AUTOPILOT_PPZ:
return "PPZ";
break;
case MAV_AUTOPILOT_UDB:
return "UDB";
break;
case MAV_AUTOPILOT_FP:
return "FP";
break;
case MAV_AUTOPILOT_PX4:
return "PX4";
break;
default:
return "";
break;
}
}
public slots:
/** @brief Set the autopilot type */
void setAutopilotType(int apType)
{
autopilot = apType;
emit systemSpecsChanged(uasId);
}
/** @brief Set the type of airframe */
void setSystemType(int systemType);
/** @brief Set the specific airframe type */
void setAirframe(int airframe)
{
if((airframe >= QGC_AIRFRAME_GENERIC) && (airframe < QGC_AIRFRAME_END_OF_ENUM))
{
this->airframe = airframe;
emit systemSpecsChanged(uasId);
}
}
/** @brief Set a new name **/
void setUASName(const QString& name);
/** @brief Executes a command **/
void executeCommand(MAV_CMD command);
/** @brief Executes a command with 7 params */
void executeCommand(MAV_CMD command, int confirmation, float param1, float param2, float param3, float param4, float param5, float param6, float param7, int component);
/** @brief Set the current battery type and voltages */
void setBatterySpecs(const QString& specs);
/** @brief Get the current battery type and specs */
QString getBatterySpecs();
/** @brief Launches the system **/
void launch();
/** @brief Write this waypoint to the list of waypoints */
//void setWaypoint(Waypoint* wp); FIXME tbd
/** @brief Set currently active waypoint */
//void setWaypointActive(int id); FIXME tbd
/** @brief Order the robot to return home **/
void home();
/** @brief Order the robot to land **/
void land();
void halt();
void go();
/** @brief Enable / disable HIL */
void enableHilFlightGear(bool enable, QString options);
void enableHilJSBSim(bool enable, QString options);
void enableHilXPlane(bool enable);
/** @brief Send the full HIL state to the MAV */
void sendHilState(quint64 time_us, float roll, float pitch, float yaw, float rollspeed,
float pitchspeed, float yawspeed, double lat, double lon, double alt,
float vx, float vy, float vz, float xacc, float yacc, float zacc);
/** @brief RAW sensors for sensor HIL */
void sendHilSensors(quint64 time_us, float xacc, float yacc, float zacc, float rollspeed, float pitchspeed, float yawspeed,
float xmag, float ymag, float zmag, float abs_pressure, float diff_pressure, float pressure_alt, float temperature, quint16 fields_changed);
/** @brief Send raw GPS for sensor HIL */
void sendHilGps(quint64 time_us, double lat, double lon, double alt, int fix_type, float eph, float epv, float vel, float cog, int satellites);
/** @brief Places the UAV in Hardware-in-the-Loop simulation status **/
void startHil();
/** @brief Stops the UAV's Hardware-in-the-Loop simulation status **/
void stopHil();
/** @brief Stops the robot system. If it is an MAV, the robot starts the emergency landing procedure **/
void emergencySTOP();
/** @brief Kills the robot. All systems are immediately shut down (e.g. the main power line is cut). This might lead to a crash **/
bool emergencyKILL();
/** @brief Shut the system cleanly down. Will shut down any onboard computers **/
void shutdown();
/** @brief Set the target position for the robot to navigate to. */
void setTargetPosition(float x, float y, float z, float yaw);
void startLowBattAlarm();
void stopLowBattAlarm();
/** @brief Arm system */
void armSystem();
/** @brief Disable the motors */
void disarmSystem();
/** @brief Set the values for the manual control of the vehicle */
void setManualControlCommands(double roll, double pitch, double yaw, double thrust, int xHat, int yHat, int buttons);
/** @brief Receive a button pressed event from an input device, e.g. joystick */
void receiveButton(int buttonIndex);
/** @brief Set the values for the 6dof manual control of the vehicle */
void setManual6DOFControlCommands(double x, double y, double z, double roll, double pitch, double yaw);
/** @brief Add a link associated with this robot */
void addLink(LinkInterface* link);
/** @brief Remove a link associated with this robot */
void removeLink(QObject* object);
/** @brief Receive a message from one of the communication links. */
virtual void receiveMessage(LinkInterface* link, mavlink_message_t message);
#ifdef QGC_PROTOBUF_ENABLED
/** @brief Receive a message from one of the communication links. */
virtual void receiveExtendedMessage(LinkInterface* link, std::tr1::shared_ptr<google::protobuf::Message> message);
#endif
/** @brief Send a message over this link (to this or to all UAS on this link) */
void sendMessage(LinkInterface* link, mavlink_message_t message);
/** @brief Send a message over all links this UAS can be reached with (!= all links) */
void sendMessage(mavlink_message_t message);
/** @brief Temporary Hack for sending packets to patch Antenna. Send a message over all serial links except for this UAS's */
void forwardMessage(mavlink_message_t message);
/** @brief Set this UAS as the system currently in focus, e.g. in the main display widgets */
void setSelected();
/** @brief Set current mode of operation, e.g. auto or manual */
void setMode(int mode);
/** @brief Request all parameters */
void requestParameters();
/** @brief Request a single parameter by name */
void requestParameter(int component, const QString& parameter);
/** @brief Request a single parameter by index */
void requestParameter(int component, int id);
/** @brief Set a system parameter */
void setParameter(const int component, const QString& id, const QVariant& value);
/** @brief Write parameters to permanent storage */
void writeParametersToStorage();
/** @brief Read parameters from permanent storage */
void readParametersFromStorage();
/** @brief Get the names of all parameters */
QList<QString> getParameterNames(int component);
/** @brief Get the ids of all components */
QList<int> getComponentIds();
void enableAllDataTransmission(int rate);
void enableRawSensorDataTransmission(int rate);
void enableExtendedSystemStatusTransmission(int rate);
void enableRCChannelDataTransmission(int rate);
void enableRawControllerDataTransmission(int rate);
//void enableRawSensorFusionTransmission(int rate);
void enablePositionTransmission(int rate);
void enableExtra1Transmission(int rate);
void enableExtra2Transmission(int rate);
void enableExtra3Transmission(int rate);
/** @brief Update the system state */
void updateState();
/** @brief Set world frame origin at current GPS position */
void setLocalOriginAtCurrentGPSPosition();
/** @brief Set world frame origin / home position at this GPS position */
void setHomePosition(double lat, double lon, double alt);
/** @brief Set local position setpoint */
void setLocalPositionSetpoint(float x, float y, float z, float yaw);
/** @brief Add an offset in body frame to the setpoint */
void setLocalPositionOffset(float x, float y, float z, float yaw);
void startRadioControlCalibration();
void startMagnetometerCalibration();
void startGyroscopeCalibration();
void startPressureCalibration();
void startDataRecording();
void stopDataRecording();
void deleteSettings();
signals:
/** @brief The main/battery voltage has changed/was updated */
//void voltageChanged(int uasId, double voltage); // Defined in UASInterface already
/** @brief An actuator value has changed */
//void actuatorChanged(UASInterface*, int actId, double value); // Defined in UASInterface already
/** @brief An actuator value has changed */
void actuatorChanged(UASInterface* uas, QString actuatorName, double min, double max, double value);
void motorChanged(UASInterface* uas, QString motorName, double min, double max, double value);
/** @brief The system load (MCU/CPU usage) changed */
void loadChanged(UASInterface* uas, double load);
/** @brief Propagate a heartbeat received from the system */
//void heartbeat(UASInterface* uas); // Defined in UASInterface already
void imageStarted(quint64 timestamp);
/** @brief A new camera image has arrived */
void imageReady(UASInterface* uas);
/** @brief HIL controls have changed */
void hilControlsChanged(uint64_t time, float rollAilerons, float pitchElevator, float yawRudder, float throttle, uint8_t systemMode, uint8_t navMode);
/** @brief HIL actuator outputs have changed */
void hilActuatorsChanged(uint64_t time, float act1, float act2, float act3, float act4, float act5, float act6, float act7, float act8);
protected:
/** @brief Get the UNIX timestamp in milliseconds, enter microseconds */
quint64 getUnixTime(quint64 time=0);
/** @brief Get the UNIX timestamp in milliseconds, enter milliseconds */
quint64 getUnixTimeFromMs(quint64 time);
/** @brief Get the UNIX timestamp in milliseconds, ignore attitudeStamped mode */
quint64 getUnixReferenceTime(quint64 time);
int componentID[256];
bool componentMulti[256];
bool connectionLost; ///< Flag indicates a timed out connection
quint64 connectionLossTime; ///< Time the connection was interrupted
quint64 lastVoltageWarning; ///< Time at which the last voltage warning occured
quint64 lastNonNullTime; ///< The last timestamp from the MAV that was not null
unsigned int onboardTimeOffsetInvalidCount; ///< Count when the offboard time offset estimation seemed wrong
bool hilEnabled; ///< Set to true if HIL mode is enabled from GCS (UAS might be in HIL even if this flag is not set, this defines the GCS HIL setting)
bool sensorHil; ///< True if sensor HIL is enabled
quint64 lastSendTimeGPS; ///< Last HIL GPS message sent
protected slots:
/** @brief Write settings to disk */
void writeSettings();
/** @brief Read settings from disk */
void readSettings();
// // MESSAGE RECEPTION
// /** @brief Receive a named value message */
// void receiveMessageNamedValue(const mavlink_message_t& message);
private:
// unsigned int mode; ///< The current mode of the MAV
};
#endif // _UAS_H_