You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
6.0 KiB
166 lines
6.0 KiB
// This file is part of Eigen, a lightweight C++ template library |
|
// for linear algebra. |
|
// |
|
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com> |
|
// |
|
// This Source Code Form is subject to the terms of the Mozilla |
|
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
|
|
|
#ifndef EIGEN_UMEYAMA_H |
|
#define EIGEN_UMEYAMA_H |
|
|
|
// This file requires the user to include |
|
// * Eigen/Core |
|
// * Eigen/LU |
|
// * Eigen/SVD |
|
// * Eigen/Array |
|
|
|
namespace Eigen { |
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN |
|
|
|
// These helpers are required since it allows to use mixed types as parameters |
|
// for the Umeyama. The problem with mixed parameters is that the return type |
|
// cannot trivially be deduced when float and double types are mixed. |
|
namespace internal { |
|
|
|
// Compile time return type deduction for different MatrixBase types. |
|
// Different means here different alignment and parameters but the same underlying |
|
// real scalar type. |
|
template<typename MatrixType, typename OtherMatrixType> |
|
struct umeyama_transform_matrix_type |
|
{ |
|
enum { |
|
MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime), |
|
|
|
// When possible we want to choose some small fixed size value since the result |
|
// is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want. |
|
HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1 |
|
}; |
|
|
|
typedef Matrix<typename traits<MatrixType>::Scalar, |
|
HomogeneousDimension, |
|
HomogeneousDimension, |
|
AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor), |
|
HomogeneousDimension, |
|
HomogeneousDimension |
|
> type; |
|
}; |
|
|
|
} |
|
|
|
#endif |
|
|
|
/** |
|
* \geometry_module \ingroup Geometry_Module |
|
* |
|
* \brief Returns the transformation between two point sets. |
|
* |
|
* The algorithm is based on: |
|
* "Least-squares estimation of transformation parameters between two point patterns", |
|
* Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573 |
|
* |
|
* It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that |
|
* \f{align*} |
|
* \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2 |
|
* \f} |
|
* is minimized. |
|
* |
|
* The algorithm is based on the analysis of the covariance matrix |
|
* \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$ |
|
* of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where |
|
* \f$d\f$ is corresponding to the dimension (which is typically small). |
|
* The analysis is involving the SVD having a complexity of \f$O(d^3)\f$ |
|
* though the actual computational effort lies in the covariance |
|
* matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when |
|
* the input point sets have dimension \f$d \times m\f$. |
|
* |
|
* Currently the method is working only for floating point matrices. |
|
* |
|
* \todo Should the return type of umeyama() become a Transform? |
|
* |
|
* \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$. |
|
* \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$. |
|
* \param with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed. |
|
* \return The homogeneous transformation |
|
* \f{align*} |
|
* T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} |
|
* \f} |
|
* minimizing the resudiual above. This transformation is always returned as an |
|
* Eigen::Matrix. |
|
*/ |
|
template <typename Derived, typename OtherDerived> |
|
typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type |
|
umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true) |
|
{ |
|
typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType; |
|
typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar; |
|
typedef typename NumTraits<Scalar>::Real RealScalar; |
|
|
|
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) |
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value), |
|
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
|
|
|
enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) }; |
|
|
|
typedef Matrix<Scalar, Dimension, 1> VectorType; |
|
typedef Matrix<Scalar, Dimension, Dimension> MatrixType; |
|
typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType; |
|
|
|
const Index m = src.rows(); // dimension |
|
const Index n = src.cols(); // number of measurements |
|
|
|
// required for demeaning ... |
|
const RealScalar one_over_n = RealScalar(1) / static_cast<RealScalar>(n); |
|
|
|
// computation of mean |
|
const VectorType src_mean = src.rowwise().sum() * one_over_n; |
|
const VectorType dst_mean = dst.rowwise().sum() * one_over_n; |
|
|
|
// demeaning of src and dst points |
|
const RowMajorMatrixType src_demean = src.colwise() - src_mean; |
|
const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean; |
|
|
|
// Eq. (36)-(37) |
|
const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n; |
|
|
|
// Eq. (38) |
|
const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose(); |
|
|
|
JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV); |
|
|
|
// Initialize the resulting transformation with an identity matrix... |
|
TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1); |
|
|
|
// Eq. (39) |
|
VectorType S = VectorType::Ones(m); |
|
|
|
if ( svd.matrixU().determinant() * svd.matrixV().determinant() < 0 ) |
|
S(m-1) = -1; |
|
|
|
// Eq. (40) and (43) |
|
Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose(); |
|
|
|
if (with_scaling) |
|
{ |
|
// Eq. (42) |
|
const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S); |
|
|
|
// Eq. (41) |
|
Rt.col(m).head(m) = dst_mean; |
|
Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean; |
|
Rt.block(0,0,m,m) *= c; |
|
} |
|
else |
|
{ |
|
Rt.col(m).head(m) = dst_mean; |
|
Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean; |
|
} |
|
|
|
return Rt; |
|
} |
|
|
|
} // end namespace Eigen |
|
|
|
#endif // EIGEN_UMEYAMA_H
|
|
|