You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
374 lines
8.4 KiB
374 lines
8.4 KiB
/* -*- mode: C++ ; c-file-style: "stroustrup" -*- ***************************** |
|
* Qwt Widget Library |
|
* Copyright (C) 1997 Josef Wilgen |
|
* Copyright (C) 2002 Uwe Rathmann |
|
* |
|
* This library is free software; you can redistribute it and/or |
|
* modify it under the terms of the Qwt License, Version 1.0 |
|
*****************************************************************************/ |
|
|
|
#include "qwt_spline.h" |
|
#include "qwt_math.h" |
|
#include "qwt_array.h" |
|
|
|
class QwtSpline::PrivateData |
|
{ |
|
public: |
|
PrivateData(): |
|
splineType(QwtSpline::Natural) { |
|
} |
|
|
|
QwtSpline::SplineType splineType; |
|
|
|
// coefficient vectors |
|
QwtArray<double> a; |
|
QwtArray<double> b; |
|
QwtArray<double> c; |
|
|
|
// control points |
|
#if QT_VERSION < 0x040000 |
|
QwtArray<QwtDoublePoint> points; |
|
#else |
|
QPolygonF points; |
|
#endif |
|
}; |
|
|
|
#if QT_VERSION < 0x040000 |
|
static int lookup(double x, const QwtArray<QwtDoublePoint> &values) |
|
#else |
|
static int lookup(double x, const QPolygonF &values) |
|
#endif |
|
{ |
|
#if 0 |
|
//qLowerBiund/qHigherBound ??? |
|
#endif |
|
int i1; |
|
const int size = (int)values.size(); |
|
|
|
if (x <= values[0].x()) |
|
i1 = 0; |
|
else if (x >= values[size - 2].x()) |
|
i1 = size - 2; |
|
else { |
|
i1 = 0; |
|
int i2 = size - 2; |
|
int i3 = 0; |
|
|
|
while ( i2 - i1 > 1 ) { |
|
i3 = i1 + ((i2 - i1) >> 1); |
|
|
|
if (values[i3].x() > x) |
|
i2 = i3; |
|
else |
|
i1 = i3; |
|
} |
|
} |
|
return i1; |
|
} |
|
|
|
//! Constructor |
|
QwtSpline::QwtSpline() |
|
{ |
|
d_data = new PrivateData; |
|
} |
|
|
|
QwtSpline::QwtSpline(const QwtSpline& other) |
|
{ |
|
d_data = new PrivateData(*other.d_data); |
|
} |
|
|
|
QwtSpline &QwtSpline::operator=( const QwtSpline &other) |
|
{ |
|
*d_data = *other.d_data; |
|
return *this; |
|
} |
|
|
|
//! Destructor |
|
QwtSpline::~QwtSpline() |
|
{ |
|
delete d_data; |
|
} |
|
|
|
void QwtSpline::setSplineType(SplineType splineType) |
|
{ |
|
d_data->splineType = splineType; |
|
} |
|
|
|
QwtSpline::SplineType QwtSpline::splineType() const |
|
{ |
|
return d_data->splineType; |
|
} |
|
|
|
//! Determine the function table index corresponding to a value x |
|
|
|
/*! |
|
\brief Calculate the spline coefficients |
|
|
|
Depending on the value of \a periodic, this function |
|
will determine the coefficients for a natural or a periodic |
|
spline and store them internally. |
|
|
|
\param x |
|
\param y points |
|
\param size number of points |
|
\param periodic if true, calculate periodic spline |
|
\return true if successful |
|
\warning The sequence of x (but not y) values has to be strictly monotone |
|
increasing, which means <code>x[0] < x[1] < .... < x[n-1]</code>. |
|
If this is not the case, the function will return false |
|
*/ |
|
#if QT_VERSION < 0x040000 |
|
bool QwtSpline::setPoints(const QwtArray<QwtDoublePoint>& points) |
|
#else |
|
bool QwtSpline::setPoints(const QPolygonF& points) |
|
#endif |
|
{ |
|
const int size = points.size(); |
|
if (size <= 2) { |
|
reset(); |
|
return false; |
|
} |
|
|
|
#if QT_VERSION < 0x040000 |
|
d_data->points = points.copy(); // Qt3: deep copy |
|
#else |
|
d_data->points = points; |
|
#endif |
|
|
|
d_data->a.resize(size-1); |
|
d_data->b.resize(size-1); |
|
d_data->c.resize(size-1); |
|
|
|
bool ok; |
|
if ( d_data->splineType == Periodic ) |
|
ok = buildPeriodicSpline(points); |
|
else |
|
ok = buildNaturalSpline(points); |
|
|
|
if (!ok) |
|
reset(); |
|
|
|
return ok; |
|
} |
|
|
|
/*! |
|
Return points passed by setPoints |
|
*/ |
|
#if QT_VERSION < 0x040000 |
|
QwtArray<QwtDoublePoint> QwtSpline::points() const |
|
#else |
|
QPolygonF QwtSpline::points() const |
|
#endif |
|
{ |
|
return d_data->points; |
|
} |
|
|
|
|
|
//! Free allocated memory and set size to 0 |
|
void QwtSpline::reset() |
|
{ |
|
d_data->a.resize(0); |
|
d_data->b.resize(0); |
|
d_data->c.resize(0); |
|
d_data->points.resize(0); |
|
} |
|
|
|
//! True if valid |
|
bool QwtSpline::isValid() const |
|
{ |
|
return d_data->a.size() > 0; |
|
} |
|
|
|
/*! |
|
Calculate the interpolated function value corresponding |
|
to a given argument x. |
|
*/ |
|
double QwtSpline::value(double x) const |
|
{ |
|
if (d_data->a.size() == 0) |
|
return 0.0; |
|
|
|
const int i = lookup(x, d_data->points); |
|
|
|
const double delta = x - d_data->points[i].x(); |
|
return( ( ( ( d_data->a[i] * delta) + d_data->b[i] ) |
|
* delta + d_data->c[i] ) * delta + d_data->points[i].y() ); |
|
} |
|
|
|
/*! |
|
\brief Determines the coefficients for a natural spline |
|
\return true if successful |
|
*/ |
|
#if QT_VERSION < 0x040000 |
|
bool QwtSpline::buildNaturalSpline(const QwtArray<QwtDoublePoint> &points) |
|
#else |
|
bool QwtSpline::buildNaturalSpline(const QPolygonF &points) |
|
#endif |
|
{ |
|
int i; |
|
|
|
#if QT_VERSION < 0x040000 |
|
const QwtDoublePoint *p = points.data(); |
|
#else |
|
const QPointF *p = points.data(); |
|
#endif |
|
const int size = points.size(); |
|
|
|
double *a = d_data->a.data(); |
|
double *b = d_data->b.data(); |
|
double *c = d_data->c.data(); |
|
|
|
// set up tridiagonal equation system; use coefficient |
|
// vectors as temporary buffers |
|
QwtArray<double> h(size-1); |
|
for (i = 0; i < size - 1; i++) { |
|
h[i] = p[i+1].x() - p[i].x(); |
|
if (h[i] <= 0) |
|
return false; |
|
} |
|
|
|
QwtArray<double> d(size-1); |
|
double dy1 = (p[1].y() - p[0].y()) / h[0]; |
|
for (i = 1; i < size - 1; i++) { |
|
b[i] = c[i] = h[i]; |
|
a[i] = 2.0 * (h[i-1] + h[i]); |
|
|
|
const double dy2 = (p[i+1].y() - p[i].y()) / h[i]; |
|
d[i] = 6.0 * ( dy1 - dy2); |
|
dy1 = dy2; |
|
} |
|
|
|
// |
|
// solve it |
|
// |
|
|
|
// L-U Factorization |
|
for(i = 1; i < size - 2; i++) { |
|
c[i] /= a[i]; |
|
a[i+1] -= b[i] * c[i]; |
|
} |
|
|
|
// forward elimination |
|
QwtArray<double> s(size); |
|
s[1] = d[1]; |
|
for ( i = 2; i < size - 1; i++) |
|
s[i] = d[i] - c[i-1] * s[i-1]; |
|
|
|
// backward elimination |
|
s[size - 2] = - s[size - 2] / a[size - 2]; |
|
for (i = size -3; i > 0; i--) |
|
s[i] = - (s[i] + b[i] * s[i+1]) / a[i]; |
|
s[size - 1] = s[0] = 0.0; |
|
|
|
// |
|
// Finally, determine the spline coefficients |
|
// |
|
for (i = 0; i < size - 1; i++) { |
|
a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i]); |
|
b[i] = 0.5 * s[i]; |
|
c[i] = ( p[i+1].y() - p[i].y() ) / h[i] |
|
- (s[i+1] + 2.0 * s[i] ) * h[i] / 6.0; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/*! |
|
\brief Determines the coefficients for a periodic spline |
|
\return true if successful |
|
*/ |
|
#if QT_VERSION < 0x040000 |
|
bool QwtSpline::buildPeriodicSpline( |
|
const QwtArray<QwtDoublePoint> &points) |
|
#else |
|
bool QwtSpline::buildPeriodicSpline(const QPolygonF &points) |
|
#endif |
|
{ |
|
int i; |
|
|
|
#if QT_VERSION < 0x040000 |
|
const QwtDoublePoint *p = points.data(); |
|
#else |
|
const QPointF *p = points.data(); |
|
#endif |
|
const int size = points.size(); |
|
|
|
double *a = d_data->a.data(); |
|
double *b = d_data->b.data(); |
|
double *c = d_data->c.data(); |
|
|
|
QwtArray<double> d(size-1); |
|
QwtArray<double> h(size-1); |
|
QwtArray<double> s(size); |
|
|
|
// |
|
// setup equation system; use coefficient |
|
// vectors as temporary buffers |
|
// |
|
for (i = 0; i < size - 1; i++) { |
|
h[i] = p[i+1].x() - p[i].x(); |
|
if (h[i] <= 0.0) |
|
return false; |
|
} |
|
|
|
const int imax = size - 2; |
|
double htmp = h[imax]; |
|
double dy1 = (p[0].y() - p[imax].y()) / htmp; |
|
for (i = 0; i <= imax; i++) { |
|
b[i] = c[i] = h[i]; |
|
a[i] = 2.0 * (htmp + h[i]); |
|
const double dy2 = (p[i+1].y() - p[i].y()) / h[i]; |
|
d[i] = 6.0 * ( dy1 - dy2); |
|
dy1 = dy2; |
|
htmp = h[i]; |
|
} |
|
|
|
// |
|
// solve it |
|
// |
|
|
|
// L-U Factorization |
|
a[0] = sqrt(a[0]); |
|
c[0] = h[imax] / a[0]; |
|
double sum = 0; |
|
|
|
for( i = 0; i < imax - 1; i++) { |
|
b[i] /= a[i]; |
|
if (i > 0) |
|
c[i] = - c[i-1] * b[i-1] / a[i]; |
|
a[i+1] = sqrt( a[i+1] - qwtSqr(b[i])); |
|
sum += qwtSqr(c[i]); |
|
} |
|
b[imax-1] = (b[imax-1] - c[imax-2] * b[imax-2]) / a[imax-1]; |
|
a[imax] = sqrt(a[imax] - qwtSqr(b[imax-1]) - sum); |
|
|
|
|
|
// forward elimination |
|
s[0] = d[0] / a[0]; |
|
sum = 0; |
|
for( i = 1; i < imax; i++) { |
|
s[i] = (d[i] - b[i-1] * s[i-1]) / a[i]; |
|
sum += c[i-1] * s[i-1]; |
|
} |
|
s[imax] = (d[imax] - b[imax-1] * s[imax-1] - sum) / a[imax]; |
|
|
|
|
|
// backward elimination |
|
s[imax] = - s[imax] / a[imax]; |
|
s[imax-1] = -(s[imax-1] + b[imax-1] * s[imax]) / a[imax-1]; |
|
for (i= imax - 2; i >= 0; i--) |
|
s[i] = - (s[i] + b[i] * s[i+1] + c[i] * s[imax]) / a[i]; |
|
|
|
// |
|
// Finally, determine the spline coefficients |
|
// |
|
s[size-1] = s[0]; |
|
for ( i=0; i < size-1; i++) { |
|
a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i]); |
|
b[i] = 0.5 * s[i]; |
|
c[i] = ( p[i+1].y() - p[i].y() ) |
|
/ h[i] - (s[i+1] + 2.0 * s[i] ) * h[i] / 6.0; |
|
} |
|
|
|
return true; |
|
}
|
|
|