地面站终端 App
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

374 lines
8.4 KiB

/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
* Qwt Widget Library
* Copyright (C) 1997 Josef Wilgen
* Copyright (C) 2002 Uwe Rathmann
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the Qwt License, Version 1.0
*****************************************************************************/
#include "qwt_spline.h"
#include "qwt_math.h"
#include "qwt_array.h"
class QwtSpline::PrivateData
{
public:
PrivateData():
splineType(QwtSpline::Natural) {
}
QwtSpline::SplineType splineType;
// coefficient vectors
QwtArray<double> a;
QwtArray<double> b;
QwtArray<double> c;
// control points
#if QT_VERSION < 0x040000
QwtArray<QwtDoublePoint> points;
#else
QPolygonF points;
#endif
};
#if QT_VERSION < 0x040000
static int lookup(double x, const QwtArray<QwtDoublePoint> &values)
#else
static int lookup(double x, const QPolygonF &values)
#endif
{
#if 0
//qLowerBiund/qHigherBound ???
#endif
int i1;
const int size = (int)values.size();
if (x <= values[0].x())
i1 = 0;
else if (x >= values[size - 2].x())
i1 = size - 2;
else {
i1 = 0;
int i2 = size - 2;
int i3 = 0;
while ( i2 - i1 > 1 ) {
i3 = i1 + ((i2 - i1) >> 1);
if (values[i3].x() > x)
i2 = i3;
else
i1 = i3;
}
}
return i1;
}
//! Constructor
QwtSpline::QwtSpline()
{
d_data = new PrivateData;
}
QwtSpline::QwtSpline(const QwtSpline& other)
{
d_data = new PrivateData(*other.d_data);
}
QwtSpline &QwtSpline::operator=( const QwtSpline &other)
{
*d_data = *other.d_data;
return *this;
}
//! Destructor
QwtSpline::~QwtSpline()
{
delete d_data;
}
void QwtSpline::setSplineType(SplineType splineType)
{
d_data->splineType = splineType;
}
QwtSpline::SplineType QwtSpline::splineType() const
{
return d_data->splineType;
}
//! Determine the function table index corresponding to a value x
/*!
\brief Calculate the spline coefficients
Depending on the value of \a periodic, this function
will determine the coefficients for a natural or a periodic
spline and store them internally.
\param x
\param y points
\param size number of points
\param periodic if true, calculate periodic spline
\return true if successful
\warning The sequence of x (but not y) values has to be strictly monotone
increasing, which means <code>x[0] < x[1] < .... < x[n-1]</code>.
If this is not the case, the function will return false
*/
#if QT_VERSION < 0x040000
bool QwtSpline::setPoints(const QwtArray<QwtDoublePoint>& points)
#else
bool QwtSpline::setPoints(const QPolygonF& points)
#endif
{
const int size = points.size();
if (size <= 2) {
reset();
return false;
}
#if QT_VERSION < 0x040000
d_data->points = points.copy(); // Qt3: deep copy
#else
d_data->points = points;
#endif
d_data->a.resize(size-1);
d_data->b.resize(size-1);
d_data->c.resize(size-1);
bool ok;
if ( d_data->splineType == Periodic )
ok = buildPeriodicSpline(points);
else
ok = buildNaturalSpline(points);
if (!ok)
reset();
return ok;
}
/*!
Return points passed by setPoints
*/
#if QT_VERSION < 0x040000
QwtArray<QwtDoublePoint> QwtSpline::points() const
#else
QPolygonF QwtSpline::points() const
#endif
{
return d_data->points;
}
//! Free allocated memory and set size to 0
void QwtSpline::reset()
{
d_data->a.resize(0);
d_data->b.resize(0);
d_data->c.resize(0);
d_data->points.resize(0);
}
//! True if valid
bool QwtSpline::isValid() const
{
return d_data->a.size() > 0;
}
/*!
Calculate the interpolated function value corresponding
to a given argument x.
*/
double QwtSpline::value(double x) const
{
if (d_data->a.size() == 0)
return 0.0;
const int i = lookup(x, d_data->points);
const double delta = x - d_data->points[i].x();
return( ( ( ( d_data->a[i] * delta) + d_data->b[i] )
* delta + d_data->c[i] ) * delta + d_data->points[i].y() );
}
/*!
\brief Determines the coefficients for a natural spline
\return true if successful
*/
#if QT_VERSION < 0x040000
bool QwtSpline::buildNaturalSpline(const QwtArray<QwtDoublePoint> &points)
#else
bool QwtSpline::buildNaturalSpline(const QPolygonF &points)
#endif
{
int i;
#if QT_VERSION < 0x040000
const QwtDoublePoint *p = points.data();
#else
const QPointF *p = points.data();
#endif
const int size = points.size();
double *a = d_data->a.data();
double *b = d_data->b.data();
double *c = d_data->c.data();
// set up tridiagonal equation system; use coefficient
// vectors as temporary buffers
QwtArray<double> h(size-1);
for (i = 0; i < size - 1; i++) {
h[i] = p[i+1].x() - p[i].x();
if (h[i] <= 0)
return false;
}
QwtArray<double> d(size-1);
double dy1 = (p[1].y() - p[0].y()) / h[0];
for (i = 1; i < size - 1; i++) {
b[i] = c[i] = h[i];
a[i] = 2.0 * (h[i-1] + h[i]);
const double dy2 = (p[i+1].y() - p[i].y()) / h[i];
d[i] = 6.0 * ( dy1 - dy2);
dy1 = dy2;
}
//
// solve it
//
// L-U Factorization
for(i = 1; i < size - 2; i++) {
c[i] /= a[i];
a[i+1] -= b[i] * c[i];
}
// forward elimination
QwtArray<double> s(size);
s[1] = d[1];
for ( i = 2; i < size - 1; i++)
s[i] = d[i] - c[i-1] * s[i-1];
// backward elimination
s[size - 2] = - s[size - 2] / a[size - 2];
for (i = size -3; i > 0; i--)
s[i] = - (s[i] + b[i] * s[i+1]) / a[i];
s[size - 1] = s[0] = 0.0;
//
// Finally, determine the spline coefficients
//
for (i = 0; i < size - 1; i++) {
a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i]);
b[i] = 0.5 * s[i];
c[i] = ( p[i+1].y() - p[i].y() ) / h[i]
- (s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
}
return true;
}
/*!
\brief Determines the coefficients for a periodic spline
\return true if successful
*/
#if QT_VERSION < 0x040000
bool QwtSpline::buildPeriodicSpline(
const QwtArray<QwtDoublePoint> &points)
#else
bool QwtSpline::buildPeriodicSpline(const QPolygonF &points)
#endif
{
int i;
#if QT_VERSION < 0x040000
const QwtDoublePoint *p = points.data();
#else
const QPointF *p = points.data();
#endif
const int size = points.size();
double *a = d_data->a.data();
double *b = d_data->b.data();
double *c = d_data->c.data();
QwtArray<double> d(size-1);
QwtArray<double> h(size-1);
QwtArray<double> s(size);
//
// setup equation system; use coefficient
// vectors as temporary buffers
//
for (i = 0; i < size - 1; i++) {
h[i] = p[i+1].x() - p[i].x();
if (h[i] <= 0.0)
return false;
}
const int imax = size - 2;
double htmp = h[imax];
double dy1 = (p[0].y() - p[imax].y()) / htmp;
for (i = 0; i <= imax; i++) {
b[i] = c[i] = h[i];
a[i] = 2.0 * (htmp + h[i]);
const double dy2 = (p[i+1].y() - p[i].y()) / h[i];
d[i] = 6.0 * ( dy1 - dy2);
dy1 = dy2;
htmp = h[i];
}
//
// solve it
//
// L-U Factorization
a[0] = sqrt(a[0]);
c[0] = h[imax] / a[0];
double sum = 0;
for( i = 0; i < imax - 1; i++) {
b[i] /= a[i];
if (i > 0)
c[i] = - c[i-1] * b[i-1] / a[i];
a[i+1] = sqrt( a[i+1] - qwtSqr(b[i]));
sum += qwtSqr(c[i]);
}
b[imax-1] = (b[imax-1] - c[imax-2] * b[imax-2]) / a[imax-1];
a[imax] = sqrt(a[imax] - qwtSqr(b[imax-1]) - sum);
// forward elimination
s[0] = d[0] / a[0];
sum = 0;
for( i = 1; i < imax; i++) {
s[i] = (d[i] - b[i-1] * s[i-1]) / a[i];
sum += c[i-1] * s[i-1];
}
s[imax] = (d[imax] - b[imax-1] * s[imax-1] - sum) / a[imax];
// backward elimination
s[imax] = - s[imax] / a[imax];
s[imax-1] = -(s[imax-1] + b[imax-1] * s[imax]) / a[imax-1];
for (i= imax - 2; i >= 0; i--)
s[i] = - (s[i] + b[i] * s[i+1] + c[i] * s[imax]) / a[i];
//
// Finally, determine the spline coefficients
//
s[size-1] = s[0];
for ( i=0; i < size-1; i++) {
a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i]);
b[i] = 0.5 * s[i];
c[i] = ( p[i+1].y() - p[i].y() )
/ h[i] - (s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
}
return true;
}