You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
459 lines
19 KiB
459 lines
19 KiB
// This file is part of Eigen, a lightweight C++ template library |
|
// for linear algebra. |
|
// |
|
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
|
// |
|
// This Source Code Form is subject to the terms of the Mozilla |
|
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
|
|
|
#ifndef EIGEN_MATRIX_H |
|
#define EIGEN_MATRIX_H |
|
|
|
namespace Eigen { |
|
|
|
namespace internal { |
|
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> |
|
struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > |
|
{ |
|
private: |
|
enum { size = internal::size_at_compile_time<_Rows,_Cols>::ret }; |
|
typedef typename find_best_packet<_Scalar,size>::type PacketScalar; |
|
enum { |
|
row_major_bit = _Options&RowMajor ? RowMajorBit : 0, |
|
is_dynamic_size_storage = _MaxRows==Dynamic || _MaxCols==Dynamic, |
|
max_size = is_dynamic_size_storage ? Dynamic : _MaxRows*_MaxCols, |
|
default_alignment = compute_default_alignment<_Scalar,max_size>::value, |
|
actual_alignment = ((_Options&DontAlign)==0) ? default_alignment : 0, |
|
required_alignment = unpacket_traits<PacketScalar>::alignment, |
|
packet_access_bit = (packet_traits<_Scalar>::Vectorizable && (EIGEN_UNALIGNED_VECTORIZE || (actual_alignment>=required_alignment))) ? PacketAccessBit : 0 |
|
}; |
|
|
|
public: |
|
typedef _Scalar Scalar; |
|
typedef Dense StorageKind; |
|
typedef Eigen::Index StorageIndex; |
|
typedef MatrixXpr XprKind; |
|
enum { |
|
RowsAtCompileTime = _Rows, |
|
ColsAtCompileTime = _Cols, |
|
MaxRowsAtCompileTime = _MaxRows, |
|
MaxColsAtCompileTime = _MaxCols, |
|
Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret, |
|
Options = _Options, |
|
InnerStrideAtCompileTime = 1, |
|
OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime, |
|
|
|
// FIXME, the following flag in only used to define NeedsToAlign in PlainObjectBase |
|
EvaluatorFlags = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit, |
|
Alignment = actual_alignment |
|
}; |
|
}; |
|
} |
|
|
|
/** \class Matrix |
|
* \ingroup Core_Module |
|
* |
|
* \brief The matrix class, also used for vectors and row-vectors |
|
* |
|
* The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen. |
|
* Vectors are matrices with one column, and row-vectors are matrices with one row. |
|
* |
|
* The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note"). |
|
* |
|
* The first three template parameters are required: |
|
* \tparam _Scalar Numeric type, e.g. float, double, int or std::complex<float>. |
|
* User defined scalar types are supported as well (see \ref user_defined_scalars "here"). |
|
* \tparam _Rows Number of rows, or \b Dynamic |
|
* \tparam _Cols Number of columns, or \b Dynamic |
|
* |
|
* The remaining template parameters are optional -- in most cases you don't have to worry about them. |
|
* \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of either |
|
* \b #AutoAlign or \b #DontAlign. |
|
* The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required |
|
* for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size. |
|
* \tparam _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note"). |
|
* \tparam _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note"). |
|
* |
|
* Eigen provides a number of typedefs covering the usual cases. Here are some examples: |
|
* |
|
* \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>) |
|
* \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>) |
|
* \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>) |
|
* |
|
* \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>) |
|
* \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>) |
|
* |
|
* \li \c Matrix2Xf is a partially fixed-size (dynamic-size) matrix of floats (\c Matrix<float, 2, Dynamic>) |
|
* \li \c MatrixX3d is a partially dynamic-size (fixed-size) matrix of double (\c Matrix<double, Dynamic, 3>) |
|
* |
|
* See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs. |
|
* |
|
* You can access elements of vectors and matrices using normal subscripting: |
|
* |
|
* \code |
|
* Eigen::VectorXd v(10); |
|
* v[0] = 0.1; |
|
* v[1] = 0.2; |
|
* v(0) = 0.3; |
|
* v(1) = 0.4; |
|
* |
|
* Eigen::MatrixXi m(10, 10); |
|
* m(0, 1) = 1; |
|
* m(0, 2) = 2; |
|
* m(0, 3) = 3; |
|
* \endcode |
|
* |
|
* This class can be extended with the help of the plugin mechanism described on the page |
|
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN. |
|
* |
|
* <i><b>Some notes:</b></i> |
|
* |
|
* <dl> |
|
* <dt><b>\anchor dense Dense versus sparse:</b></dt> |
|
* <dd>This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module. |
|
* |
|
* Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array. |
|
* This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.</dd> |
|
* |
|
* <dt><b>\anchor fixedsize Fixed-size versus dynamic-size:</b></dt> |
|
* <dd>Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array |
|
* of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up |
|
* to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time. |
|
* |
|
* Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime |
|
* variables, and the array of coefficients is allocated dynamically on the heap. |
|
* |
|
* Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of a std::map. |
|
* If you want this behavior, see the Sparse module.</dd> |
|
* |
|
* <dt><b>\anchor maxrows _MaxRows and _MaxCols:</b></dt> |
|
* <dd>In most cases, one just leaves these parameters to the default values. |
|
* These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases |
|
* when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot |
|
* exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols |
|
* are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd> |
|
* </dl> |
|
* |
|
* <i><b>ABI and storage layout</b></i> |
|
* |
|
* The table below summarizes the ABI of some possible Matrix instances which is fixed thorough the lifetime of Eigen 3. |
|
* <table class="manual"> |
|
* <tr><th>Matrix type</th><th>Equivalent C structure</th></tr> |
|
* <tr><td>\code Matrix<T,Dynamic,Dynamic> \endcode</td><td>\code |
|
* struct { |
|
* T *data; // with (size_t(data)%EIGEN_MAX_ALIGN_BYTES)==0 |
|
* Eigen::Index rows, cols; |
|
* }; |
|
* \endcode</td></tr> |
|
* <tr class="alt"><td>\code |
|
* Matrix<T,Dynamic,1> |
|
* Matrix<T,1,Dynamic> \endcode</td><td>\code |
|
* struct { |
|
* T *data; // with (size_t(data)%EIGEN_MAX_ALIGN_BYTES)==0 |
|
* Eigen::Index size; |
|
* }; |
|
* \endcode</td></tr> |
|
* <tr><td>\code Matrix<T,Rows,Cols> \endcode</td><td>\code |
|
* struct { |
|
* T data[Rows*Cols]; // with (size_t(data)%A(Rows*Cols*sizeof(T)))==0 |
|
* }; |
|
* \endcode</td></tr> |
|
* <tr class="alt"><td>\code Matrix<T,Dynamic,Dynamic,0,MaxRows,MaxCols> \endcode</td><td>\code |
|
* struct { |
|
* T data[MaxRows*MaxCols]; // with (size_t(data)%A(MaxRows*MaxCols*sizeof(T)))==0 |
|
* Eigen::Index rows, cols; |
|
* }; |
|
* \endcode</td></tr> |
|
* </table> |
|
* Note that in this table Rows, Cols, MaxRows and MaxCols are all positive integers. A(S) is defined to the largest possible power-of-two |
|
* smaller to EIGEN_MAX_STATIC_ALIGN_BYTES. |
|
* |
|
* \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy, |
|
* \ref TopicStorageOrders |
|
*/ |
|
|
|
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> |
|
class Matrix |
|
: public PlainObjectBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > |
|
{ |
|
public: |
|
|
|
/** \brief Base class typedef. |
|
* \sa PlainObjectBase |
|
*/ |
|
typedef PlainObjectBase<Matrix> Base; |
|
|
|
enum { Options = _Options }; |
|
|
|
EIGEN_DENSE_PUBLIC_INTERFACE(Matrix) |
|
|
|
typedef typename Base::PlainObject PlainObject; |
|
|
|
using Base::base; |
|
using Base::coeffRef; |
|
|
|
/** |
|
* \brief Assigns matrices to each other. |
|
* |
|
* \note This is a special case of the templated operator=. Its purpose is |
|
* to prevent a default operator= from hiding the templated operator=. |
|
* |
|
* \callgraph |
|
*/ |
|
EIGEN_DEVICE_FUNC |
|
EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other) |
|
{ |
|
return Base::_set(other); |
|
} |
|
|
|
/** \internal |
|
* \brief Copies the value of the expression \a other into \c *this with automatic resizing. |
|
* |
|
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), |
|
* it will be initialized. |
|
* |
|
* Note that copying a row-vector into a vector (and conversely) is allowed. |
|
* The resizing, if any, is then done in the appropriate way so that row-vectors |
|
* remain row-vectors and vectors remain vectors. |
|
*/ |
|
template<typename OtherDerived> |
|
EIGEN_DEVICE_FUNC |
|
EIGEN_STRONG_INLINE Matrix& operator=(const DenseBase<OtherDerived>& other) |
|
{ |
|
return Base::_set(other); |
|
} |
|
|
|
/* Here, doxygen failed to copy the brief information when using \copydoc */ |
|
|
|
/** |
|
* \brief Copies the generic expression \a other into *this. |
|
* \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other) |
|
*/ |
|
template<typename OtherDerived> |
|
EIGEN_DEVICE_FUNC |
|
EIGEN_STRONG_INLINE Matrix& operator=(const EigenBase<OtherDerived> &other) |
|
{ |
|
return Base::operator=(other); |
|
} |
|
|
|
template<typename OtherDerived> |
|
EIGEN_DEVICE_FUNC |
|
EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue<OtherDerived>& func) |
|
{ |
|
return Base::operator=(func); |
|
} |
|
|
|
/** \brief Default constructor. |
|
* |
|
* For fixed-size matrices, does nothing. |
|
* |
|
* For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix |
|
* is called a null matrix. This constructor is the unique way to create null matrices: resizing |
|
* a matrix to 0 is not supported. |
|
* |
|
* \sa resize(Index,Index) |
|
*/ |
|
EIGEN_DEVICE_FUNC |
|
EIGEN_STRONG_INLINE Matrix() : Base() |
|
{ |
|
Base::_check_template_params(); |
|
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED |
|
} |
|
|
|
// FIXME is it still needed |
|
EIGEN_DEVICE_FUNC |
|
explicit Matrix(internal::constructor_without_unaligned_array_assert) |
|
: Base(internal::constructor_without_unaligned_array_assert()) |
|
{ Base::_check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED } |
|
|
|
#if EIGEN_HAS_RVALUE_REFERENCES |
|
EIGEN_DEVICE_FUNC |
|
Matrix(Matrix&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value) |
|
: Base(std::move(other)) |
|
{ |
|
Base::_check_template_params(); |
|
} |
|
EIGEN_DEVICE_FUNC |
|
Matrix& operator=(Matrix&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value) |
|
{ |
|
other.swap(*this); |
|
return *this; |
|
} |
|
#endif |
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN |
|
|
|
// This constructor is for both 1x1 matrices and dynamic vectors |
|
template<typename T> |
|
EIGEN_DEVICE_FUNC |
|
EIGEN_STRONG_INLINE explicit Matrix(const T& x) |
|
{ |
|
Base::_check_template_params(); |
|
Base::template _init1<T>(x); |
|
} |
|
|
|
template<typename T0, typename T1> |
|
EIGEN_DEVICE_FUNC |
|
EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y) |
|
{ |
|
Base::_check_template_params(); |
|
Base::template _init2<T0,T1>(x, y); |
|
} |
|
#else |
|
/** \brief Constructs a fixed-sized matrix initialized with coefficients starting at \a data */ |
|
EIGEN_DEVICE_FUNC |
|
explicit Matrix(const Scalar *data); |
|
|
|
/** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors |
|
* |
|
* This is useful for dynamic-size vectors. For fixed-size vectors, |
|
* it is redundant to pass these parameters, so one should use the default constructor |
|
* Matrix() instead. |
|
* |
|
* \warning This constructor is disabled for fixed-size \c 1x1 matrices. For instance, |
|
* calling Matrix<double,1,1>(1) will call the initialization constructor: Matrix(const Scalar&). |
|
* For fixed-size \c 1x1 matrices it is therefore recommended to use the default |
|
* constructor Matrix() instead, especially when using one of the non standard |
|
* \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives). |
|
*/ |
|
EIGEN_STRONG_INLINE explicit Matrix(Index dim); |
|
/** \brief Constructs an initialized 1x1 matrix with the given coefficient */ |
|
Matrix(const Scalar& x); |
|
/** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns. |
|
* |
|
* This is useful for dynamic-size matrices. For fixed-size matrices, |
|
* it is redundant to pass these parameters, so one should use the default constructor |
|
* Matrix() instead. |
|
* |
|
* \warning This constructor is disabled for fixed-size \c 1x2 and \c 2x1 vectors. For instance, |
|
* calling Matrix2f(2,1) will call the initialization constructor: Matrix(const Scalar& x, const Scalar& y). |
|
* For fixed-size \c 1x2 or \c 2x1 vectors it is therefore recommended to use the default |
|
* constructor Matrix() instead, especially when using one of the non standard |
|
* \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives). |
|
*/ |
|
EIGEN_DEVICE_FUNC |
|
Matrix(Index rows, Index cols); |
|
|
|
/** \brief Constructs an initialized 2D vector with given coefficients */ |
|
Matrix(const Scalar& x, const Scalar& y); |
|
#endif |
|
|
|
/** \brief Constructs an initialized 3D vector with given coefficients */ |
|
EIGEN_DEVICE_FUNC |
|
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z) |
|
{ |
|
Base::_check_template_params(); |
|
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3) |
|
m_storage.data()[0] = x; |
|
m_storage.data()[1] = y; |
|
m_storage.data()[2] = z; |
|
} |
|
/** \brief Constructs an initialized 4D vector with given coefficients */ |
|
EIGEN_DEVICE_FUNC |
|
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w) |
|
{ |
|
Base::_check_template_params(); |
|
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4) |
|
m_storage.data()[0] = x; |
|
m_storage.data()[1] = y; |
|
m_storage.data()[2] = z; |
|
m_storage.data()[3] = w; |
|
} |
|
|
|
|
|
/** \brief Copy constructor */ |
|
EIGEN_DEVICE_FUNC |
|
EIGEN_STRONG_INLINE Matrix(const Matrix& other) : Base(other) |
|
{ } |
|
|
|
/** \brief Copy constructor for generic expressions. |
|
* \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) |
|
*/ |
|
template<typename OtherDerived> |
|
EIGEN_DEVICE_FUNC |
|
EIGEN_STRONG_INLINE Matrix(const EigenBase<OtherDerived> &other) |
|
: Base(other.derived()) |
|
{ } |
|
|
|
EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; } |
|
EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); } |
|
|
|
/////////// Geometry module /////////// |
|
|
|
template<typename OtherDerived> |
|
EIGEN_DEVICE_FUNC |
|
explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r); |
|
template<typename OtherDerived> |
|
EIGEN_DEVICE_FUNC |
|
Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r); |
|
|
|
// allow to extend Matrix outside Eigen |
|
#ifdef EIGEN_MATRIX_PLUGIN |
|
#include EIGEN_MATRIX_PLUGIN |
|
#endif |
|
|
|
protected: |
|
template <typename Derived, typename OtherDerived, bool IsVector> |
|
friend struct internal::conservative_resize_like_impl; |
|
|
|
using Base::m_storage; |
|
}; |
|
|
|
/** \defgroup matrixtypedefs Global matrix typedefs |
|
* |
|
* \ingroup Core_Module |
|
* |
|
* Eigen defines several typedef shortcuts for most common matrix and vector types. |
|
* |
|
* The general patterns are the following: |
|
* |
|
* \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size, |
|
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd |
|
* for complex double. |
|
* |
|
* For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats. |
|
* |
|
* There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is |
|
* a fixed-size vector of 4 complex floats. |
|
* |
|
* \sa class Matrix |
|
*/ |
|
|
|
#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ |
|
/** \ingroup matrixtypedefs */ \ |
|
typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \ |
|
/** \ingroup matrixtypedefs */ \ |
|
typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \ |
|
/** \ingroup matrixtypedefs */ \ |
|
typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix; |
|
|
|
#define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \ |
|
/** \ingroup matrixtypedefs */ \ |
|
typedef Matrix<Type, Size, Dynamic> Matrix##Size##X##TypeSuffix; \ |
|
/** \ingroup matrixtypedefs */ \ |
|
typedef Matrix<Type, Dynamic, Size> Matrix##X##Size##TypeSuffix; |
|
|
|
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ |
|
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ |
|
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ |
|
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ |
|
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \ |
|
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \ |
|
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \ |
|
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 4) |
|
|
|
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) |
|
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) |
|
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) |
|
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>, cf) |
|
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd) |
|
|
|
#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES |
|
#undef EIGEN_MAKE_TYPEDEFS |
|
#undef EIGEN_MAKE_FIXED_TYPEDEFS |
|
|
|
} // end namespace Eigen |
|
|
|
#endif // EIGEN_MATRIX_H
|
|
|