You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
248 lines
9.0 KiB
248 lines
9.0 KiB
// This file is part of Eigen, a lightweight C++ template library |
|
// for linear algebra. |
|
// |
|
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
|
// |
|
// This Source Code Form is subject to the terms of the Mozilla |
|
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
|
|
|
#ifndef EIGEN_NUMTRAITS_H |
|
#define EIGEN_NUMTRAITS_H |
|
|
|
namespace Eigen { |
|
|
|
namespace internal { |
|
|
|
// default implementation of digits10(), based on numeric_limits if specialized, |
|
// 0 for integer types, and log10(epsilon()) otherwise. |
|
template< typename T, |
|
bool use_numeric_limits = std::numeric_limits<T>::is_specialized, |
|
bool is_integer = NumTraits<T>::IsInteger> |
|
struct default_digits10_impl |
|
{ |
|
static int run() { return std::numeric_limits<T>::digits10; } |
|
}; |
|
|
|
template<typename T> |
|
struct default_digits10_impl<T,false,false> // Floating point |
|
{ |
|
static int run() { |
|
using std::log10; |
|
using std::ceil; |
|
typedef typename NumTraits<T>::Real Real; |
|
return int(ceil(-log10(NumTraits<Real>::epsilon()))); |
|
} |
|
}; |
|
|
|
template<typename T> |
|
struct default_digits10_impl<T,false,true> // Integer |
|
{ |
|
static int run() { return 0; } |
|
}; |
|
|
|
} // end namespace internal |
|
|
|
/** \class NumTraits |
|
* \ingroup Core_Module |
|
* |
|
* \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen. |
|
* |
|
* \tparam T the numeric type at hand |
|
* |
|
* This class stores enums, typedefs and static methods giving information about a numeric type. |
|
* |
|
* The provided data consists of: |
|
* \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real, |
|
* then \c Real is just a typedef to \a T. If \a T is \c std::complex<U> then \c Real |
|
* is a typedef to \a U. |
|
* \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values, |
|
* such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives |
|
* \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to |
|
* take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is |
|
* only intended as a helper for code that needs to explicitly promote types. |
|
* \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for \c std::complex<U>, Literal is defined as \c U. |
|
* Of course, this type must be fully compatible with \a T. In doubt, just use \a T here. |
|
* \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what |
|
* this means, just use \a T here. |
|
* \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex |
|
* type, and to 0 otherwise. |
|
* \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int, |
|
* and to \c 0 otherwise. |
|
* \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed |
|
* to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers. |
|
* Stay vague here. No need to do architecture-specific stuff. |
|
* \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned. |
|
* \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must |
|
* be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise. |
|
* \li An epsilon() function which, unlike <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/epsilon">std::numeric_limits::epsilon()</a>, |
|
* it returns a \a Real instead of a \a T. |
|
* \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default |
|
* value by the fuzzy comparison operators. |
|
* \li highest() and lowest() functions returning the highest and lowest possible values respectively. |
|
* \li digits10() function returning the number of decimal digits that can be represented without change. This is |
|
* the analogue of <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits10">std::numeric_limits<T>::digits10</a> |
|
* which is used as the default implementation if specialized. |
|
*/ |
|
|
|
template<typename T> struct GenericNumTraits |
|
{ |
|
enum { |
|
IsInteger = std::numeric_limits<T>::is_integer, |
|
IsSigned = std::numeric_limits<T>::is_signed, |
|
IsComplex = 0, |
|
RequireInitialization = internal::is_arithmetic<T>::value ? 0 : 1, |
|
ReadCost = 1, |
|
AddCost = 1, |
|
MulCost = 1 |
|
}; |
|
|
|
typedef T Real; |
|
typedef typename internal::conditional< |
|
IsInteger, |
|
typename internal::conditional<sizeof(T)<=2, float, double>::type, |
|
T |
|
>::type NonInteger; |
|
typedef T Nested; |
|
typedef T Literal; |
|
|
|
EIGEN_DEVICE_FUNC |
|
static inline Real epsilon() |
|
{ |
|
return numext::numeric_limits<T>::epsilon(); |
|
} |
|
|
|
EIGEN_DEVICE_FUNC |
|
static inline int digits10() |
|
{ |
|
return internal::default_digits10_impl<T>::run(); |
|
} |
|
|
|
EIGEN_DEVICE_FUNC |
|
static inline Real dummy_precision() |
|
{ |
|
// make sure to override this for floating-point types |
|
return Real(0); |
|
} |
|
|
|
|
|
EIGEN_DEVICE_FUNC |
|
static inline T highest() { |
|
return (numext::numeric_limits<T>::max)(); |
|
} |
|
|
|
EIGEN_DEVICE_FUNC |
|
static inline T lowest() { |
|
return IsInteger ? (numext::numeric_limits<T>::min)() : (-(numext::numeric_limits<T>::max)()); |
|
} |
|
|
|
EIGEN_DEVICE_FUNC |
|
static inline T infinity() { |
|
return numext::numeric_limits<T>::infinity(); |
|
} |
|
|
|
EIGEN_DEVICE_FUNC |
|
static inline T quiet_NaN() { |
|
return numext::numeric_limits<T>::quiet_NaN(); |
|
} |
|
}; |
|
|
|
template<typename T> struct NumTraits : GenericNumTraits<T> |
|
{}; |
|
|
|
template<> struct NumTraits<float> |
|
: GenericNumTraits<float> |
|
{ |
|
EIGEN_DEVICE_FUNC |
|
static inline float dummy_precision() { return 1e-5f; } |
|
}; |
|
|
|
template<> struct NumTraits<double> : GenericNumTraits<double> |
|
{ |
|
EIGEN_DEVICE_FUNC |
|
static inline double dummy_precision() { return 1e-12; } |
|
}; |
|
|
|
template<> struct NumTraits<long double> |
|
: GenericNumTraits<long double> |
|
{ |
|
static inline long double dummy_precision() { return 1e-15l; } |
|
}; |
|
|
|
template<typename _Real> struct NumTraits<std::complex<_Real> > |
|
: GenericNumTraits<std::complex<_Real> > |
|
{ |
|
typedef _Real Real; |
|
typedef typename NumTraits<_Real>::Literal Literal; |
|
enum { |
|
IsComplex = 1, |
|
RequireInitialization = NumTraits<_Real>::RequireInitialization, |
|
ReadCost = 2 * NumTraits<_Real>::ReadCost, |
|
AddCost = 2 * NumTraits<Real>::AddCost, |
|
MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost |
|
}; |
|
|
|
EIGEN_DEVICE_FUNC |
|
static inline Real epsilon() { return NumTraits<Real>::epsilon(); } |
|
EIGEN_DEVICE_FUNC |
|
static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); } |
|
EIGEN_DEVICE_FUNC |
|
static inline int digits10() { return NumTraits<Real>::digits10(); } |
|
}; |
|
|
|
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
|
struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > |
|
{ |
|
typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType; |
|
typedef typename NumTraits<Scalar>::Real RealScalar; |
|
typedef Array<RealScalar, Rows, Cols, Options, MaxRows, MaxCols> Real; |
|
typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar; |
|
typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger; |
|
typedef ArrayType & Nested; |
|
typedef typename NumTraits<Scalar>::Literal Literal; |
|
|
|
enum { |
|
IsComplex = NumTraits<Scalar>::IsComplex, |
|
IsInteger = NumTraits<Scalar>::IsInteger, |
|
IsSigned = NumTraits<Scalar>::IsSigned, |
|
RequireInitialization = 1, |
|
ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::ReadCost, |
|
AddCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::AddCost, |
|
MulCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::MulCost |
|
}; |
|
|
|
EIGEN_DEVICE_FUNC |
|
static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); } |
|
EIGEN_DEVICE_FUNC |
|
static inline RealScalar dummy_precision() { return NumTraits<RealScalar>::dummy_precision(); } |
|
|
|
static inline int digits10() { return NumTraits<Scalar>::digits10(); } |
|
}; |
|
|
|
template<> struct NumTraits<std::string> |
|
: GenericNumTraits<std::string> |
|
{ |
|
enum { |
|
RequireInitialization = 1, |
|
ReadCost = HugeCost, |
|
AddCost = HugeCost, |
|
MulCost = HugeCost |
|
}; |
|
|
|
static inline int digits10() { return 0; } |
|
|
|
private: |
|
static inline std::string epsilon(); |
|
static inline std::string dummy_precision(); |
|
static inline std::string lowest(); |
|
static inline std::string highest(); |
|
static inline std::string infinity(); |
|
static inline std::string quiet_NaN(); |
|
}; |
|
|
|
// Empty specialization for void to allow template specialization based on NumTraits<T>::Real with T==void and SFINAE. |
|
template<> struct NumTraits<void> {}; |
|
|
|
} // end namespace Eigen |
|
|
|
#endif // EIGEN_NUMTRAITS_H
|
|
|