You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
407 lines
14 KiB
407 lines
14 KiB
// This file is part of Eigen, a lightweight C++ template library |
|
// for linear algebra. |
|
// |
|
// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
|
// |
|
// This Source Code Form is subject to the terms of the Mozilla |
|
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
|
|
|
#ifndef EIGEN_TRANSPOSITIONS_H |
|
#define EIGEN_TRANSPOSITIONS_H |
|
|
|
namespace Eigen { |
|
|
|
template<typename Derived> |
|
class TranspositionsBase |
|
{ |
|
typedef internal::traits<Derived> Traits; |
|
|
|
public: |
|
|
|
typedef typename Traits::IndicesType IndicesType; |
|
typedef typename IndicesType::Scalar StorageIndex; |
|
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
|
|
|
Derived& derived() { return *static_cast<Derived*>(this); } |
|
const Derived& derived() const { return *static_cast<const Derived*>(this); } |
|
|
|
/** Copies the \a other transpositions into \c *this */ |
|
template<typename OtherDerived> |
|
Derived& operator=(const TranspositionsBase<OtherDerived>& other) |
|
{ |
|
indices() = other.indices(); |
|
return derived(); |
|
} |
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN |
|
/** This is a special case of the templated operator=. Its purpose is to |
|
* prevent a default operator= from hiding the templated operator=. |
|
*/ |
|
Derived& operator=(const TranspositionsBase& other) |
|
{ |
|
indices() = other.indices(); |
|
return derived(); |
|
} |
|
#endif |
|
|
|
/** \returns the number of transpositions */ |
|
Index size() const { return indices().size(); } |
|
/** \returns the number of rows of the equivalent permutation matrix */ |
|
Index rows() const { return indices().size(); } |
|
/** \returns the number of columns of the equivalent permutation matrix */ |
|
Index cols() const { return indices().size(); } |
|
|
|
/** Direct access to the underlying index vector */ |
|
inline const StorageIndex& coeff(Index i) const { return indices().coeff(i); } |
|
/** Direct access to the underlying index vector */ |
|
inline StorageIndex& coeffRef(Index i) { return indices().coeffRef(i); } |
|
/** Direct access to the underlying index vector */ |
|
inline const StorageIndex& operator()(Index i) const { return indices()(i); } |
|
/** Direct access to the underlying index vector */ |
|
inline StorageIndex& operator()(Index i) { return indices()(i); } |
|
/** Direct access to the underlying index vector */ |
|
inline const StorageIndex& operator[](Index i) const { return indices()(i); } |
|
/** Direct access to the underlying index vector */ |
|
inline StorageIndex& operator[](Index i) { return indices()(i); } |
|
|
|
/** const version of indices(). */ |
|
const IndicesType& indices() const { return derived().indices(); } |
|
/** \returns a reference to the stored array representing the transpositions. */ |
|
IndicesType& indices() { return derived().indices(); } |
|
|
|
/** Resizes to given size. */ |
|
inline void resize(Index newSize) |
|
{ |
|
indices().resize(newSize); |
|
} |
|
|
|
/** Sets \c *this to represents an identity transformation */ |
|
void setIdentity() |
|
{ |
|
for(StorageIndex i = 0; i < indices().size(); ++i) |
|
coeffRef(i) = i; |
|
} |
|
|
|
// FIXME: do we want such methods ? |
|
// might be usefull when the target matrix expression is complex, e.g.: |
|
// object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..); |
|
/* |
|
template<typename MatrixType> |
|
void applyForwardToRows(MatrixType& mat) const |
|
{ |
|
for(Index k=0 ; k<size() ; ++k) |
|
if(m_indices(k)!=k) |
|
mat.row(k).swap(mat.row(m_indices(k))); |
|
} |
|
|
|
template<typename MatrixType> |
|
void applyBackwardToRows(MatrixType& mat) const |
|
{ |
|
for(Index k=size()-1 ; k>=0 ; --k) |
|
if(m_indices(k)!=k) |
|
mat.row(k).swap(mat.row(m_indices(k))); |
|
} |
|
*/ |
|
|
|
/** \returns the inverse transformation */ |
|
inline Transpose<TranspositionsBase> inverse() const |
|
{ return Transpose<TranspositionsBase>(derived()); } |
|
|
|
/** \returns the tranpose transformation */ |
|
inline Transpose<TranspositionsBase> transpose() const |
|
{ return Transpose<TranspositionsBase>(derived()); } |
|
|
|
protected: |
|
}; |
|
|
|
namespace internal { |
|
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex> |
|
struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> > |
|
: traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> > |
|
{ |
|
typedef Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; |
|
typedef TranspositionsStorage StorageKind; |
|
}; |
|
} |
|
|
|
/** \class Transpositions |
|
* \ingroup Core_Module |
|
* |
|
* \brief Represents a sequence of transpositions (row/column interchange) |
|
* |
|
* \tparam SizeAtCompileTime the number of transpositions, or Dynamic |
|
* \tparam MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. |
|
* |
|
* This class represents a permutation transformation as a sequence of \em n transpositions |
|
* \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices. |
|
* Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges |
|
* the rows \c i and \c indices[i] of the matrix \c M. |
|
* A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange. |
|
* |
|
* Compared to the class PermutationMatrix, such a sequence of transpositions is what is |
|
* computed during a decomposition with pivoting, and it is faster when applying the permutation in-place. |
|
* |
|
* To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example: |
|
* \code |
|
* Transpositions tr; |
|
* MatrixXf mat; |
|
* mat = tr * mat; |
|
* \endcode |
|
* In this example, we detect that the matrix appears on both side, and so the transpositions |
|
* are applied in-place without any temporary or extra copy. |
|
* |
|
* \sa class PermutationMatrix |
|
*/ |
|
|
|
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex> |
|
class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> > |
|
{ |
|
typedef internal::traits<Transpositions> Traits; |
|
public: |
|
|
|
typedef TranspositionsBase<Transpositions> Base; |
|
typedef typename Traits::IndicesType IndicesType; |
|
typedef typename IndicesType::Scalar StorageIndex; |
|
|
|
inline Transpositions() {} |
|
|
|
/** Copy constructor. */ |
|
template<typename OtherDerived> |
|
inline Transpositions(const TranspositionsBase<OtherDerived>& other) |
|
: m_indices(other.indices()) {} |
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN |
|
/** Standard copy constructor. Defined only to prevent a default copy constructor |
|
* from hiding the other templated constructor */ |
|
inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {} |
|
#endif |
|
|
|
/** Generic constructor from expression of the transposition indices. */ |
|
template<typename Other> |
|
explicit inline Transpositions(const MatrixBase<Other>& indices) : m_indices(indices) |
|
{} |
|
|
|
/** Copies the \a other transpositions into \c *this */ |
|
template<typename OtherDerived> |
|
Transpositions& operator=(const TranspositionsBase<OtherDerived>& other) |
|
{ |
|
return Base::operator=(other); |
|
} |
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN |
|
/** This is a special case of the templated operator=. Its purpose is to |
|
* prevent a default operator= from hiding the templated operator=. |
|
*/ |
|
Transpositions& operator=(const Transpositions& other) |
|
{ |
|
m_indices = other.m_indices; |
|
return *this; |
|
} |
|
#endif |
|
|
|
/** Constructs an uninitialized permutation matrix of given size. |
|
*/ |
|
inline Transpositions(Index size) : m_indices(size) |
|
{} |
|
|
|
/** const version of indices(). */ |
|
const IndicesType& indices() const { return m_indices; } |
|
/** \returns a reference to the stored array representing the transpositions. */ |
|
IndicesType& indices() { return m_indices; } |
|
|
|
protected: |
|
|
|
IndicesType m_indices; |
|
}; |
|
|
|
|
|
namespace internal { |
|
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess> |
|
struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,_PacketAccess> > |
|
: traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> > |
|
{ |
|
typedef Map<const Matrix<_StorageIndex,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType; |
|
typedef _StorageIndex StorageIndex; |
|
typedef TranspositionsStorage StorageKind; |
|
}; |
|
} |
|
|
|
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int PacketAccess> |
|
class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,PacketAccess> |
|
: public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,PacketAccess> > |
|
{ |
|
typedef internal::traits<Map> Traits; |
|
public: |
|
|
|
typedef TranspositionsBase<Map> Base; |
|
typedef typename Traits::IndicesType IndicesType; |
|
typedef typename IndicesType::Scalar StorageIndex; |
|
|
|
explicit inline Map(const StorageIndex* indicesPtr) |
|
: m_indices(indicesPtr) |
|
{} |
|
|
|
inline Map(const StorageIndex* indicesPtr, Index size) |
|
: m_indices(indicesPtr,size) |
|
{} |
|
|
|
/** Copies the \a other transpositions into \c *this */ |
|
template<typename OtherDerived> |
|
Map& operator=(const TranspositionsBase<OtherDerived>& other) |
|
{ |
|
return Base::operator=(other); |
|
} |
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN |
|
/** This is a special case of the templated operator=. Its purpose is to |
|
* prevent a default operator= from hiding the templated operator=. |
|
*/ |
|
Map& operator=(const Map& other) |
|
{ |
|
m_indices = other.m_indices; |
|
return *this; |
|
} |
|
#endif |
|
|
|
/** const version of indices(). */ |
|
const IndicesType& indices() const { return m_indices; } |
|
|
|
/** \returns a reference to the stored array representing the transpositions. */ |
|
IndicesType& indices() { return m_indices; } |
|
|
|
protected: |
|
|
|
IndicesType m_indices; |
|
}; |
|
|
|
namespace internal { |
|
template<typename _IndicesType> |
|
struct traits<TranspositionsWrapper<_IndicesType> > |
|
: traits<PermutationWrapper<_IndicesType> > |
|
{ |
|
typedef TranspositionsStorage StorageKind; |
|
}; |
|
} |
|
|
|
template<typename _IndicesType> |
|
class TranspositionsWrapper |
|
: public TranspositionsBase<TranspositionsWrapper<_IndicesType> > |
|
{ |
|
typedef internal::traits<TranspositionsWrapper> Traits; |
|
public: |
|
|
|
typedef TranspositionsBase<TranspositionsWrapper> Base; |
|
typedef typename Traits::IndicesType IndicesType; |
|
typedef typename IndicesType::Scalar StorageIndex; |
|
|
|
explicit inline TranspositionsWrapper(IndicesType& indices) |
|
: m_indices(indices) |
|
{} |
|
|
|
/** Copies the \a other transpositions into \c *this */ |
|
template<typename OtherDerived> |
|
TranspositionsWrapper& operator=(const TranspositionsBase<OtherDerived>& other) |
|
{ |
|
return Base::operator=(other); |
|
} |
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN |
|
/** This is a special case of the templated operator=. Its purpose is to |
|
* prevent a default operator= from hiding the templated operator=. |
|
*/ |
|
TranspositionsWrapper& operator=(const TranspositionsWrapper& other) |
|
{ |
|
m_indices = other.m_indices; |
|
return *this; |
|
} |
|
#endif |
|
|
|
/** const version of indices(). */ |
|
const IndicesType& indices() const { return m_indices; } |
|
|
|
/** \returns a reference to the stored array representing the transpositions. */ |
|
IndicesType& indices() { return m_indices; } |
|
|
|
protected: |
|
|
|
typename IndicesType::Nested m_indices; |
|
}; |
|
|
|
|
|
|
|
/** \returns the \a matrix with the \a transpositions applied to the columns. |
|
*/ |
|
template<typename MatrixDerived, typename TranspositionsDerived> |
|
EIGEN_DEVICE_FUNC |
|
const Product<MatrixDerived, TranspositionsDerived, AliasFreeProduct> |
|
operator*(const MatrixBase<MatrixDerived> &matrix, |
|
const TranspositionsBase<TranspositionsDerived>& transpositions) |
|
{ |
|
return Product<MatrixDerived, TranspositionsDerived, AliasFreeProduct> |
|
(matrix.derived(), transpositions.derived()); |
|
} |
|
|
|
/** \returns the \a matrix with the \a transpositions applied to the rows. |
|
*/ |
|
template<typename TranspositionsDerived, typename MatrixDerived> |
|
EIGEN_DEVICE_FUNC |
|
const Product<TranspositionsDerived, MatrixDerived, AliasFreeProduct> |
|
operator*(const TranspositionsBase<TranspositionsDerived> &transpositions, |
|
const MatrixBase<MatrixDerived>& matrix) |
|
{ |
|
return Product<TranspositionsDerived, MatrixDerived, AliasFreeProduct> |
|
(transpositions.derived(), matrix.derived()); |
|
} |
|
|
|
// Template partial specialization for transposed/inverse transpositions |
|
|
|
namespace internal { |
|
|
|
template<typename Derived> |
|
struct traits<Transpose<TranspositionsBase<Derived> > > |
|
: traits<Derived> |
|
{}; |
|
|
|
} // end namespace internal |
|
|
|
template<typename TranspositionsDerived> |
|
class Transpose<TranspositionsBase<TranspositionsDerived> > |
|
{ |
|
typedef TranspositionsDerived TranspositionType; |
|
typedef typename TranspositionType::IndicesType IndicesType; |
|
public: |
|
|
|
explicit Transpose(const TranspositionType& t) : m_transpositions(t) {} |
|
|
|
Index size() const { return m_transpositions.size(); } |
|
Index rows() const { return m_transpositions.size(); } |
|
Index cols() const { return m_transpositions.size(); } |
|
|
|
/** \returns the \a matrix with the inverse transpositions applied to the columns. |
|
*/ |
|
template<typename OtherDerived> friend |
|
const Product<OtherDerived, Transpose, AliasFreeProduct> |
|
operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trt) |
|
{ |
|
return Product<OtherDerived, Transpose, AliasFreeProduct>(matrix.derived(), trt); |
|
} |
|
|
|
/** \returns the \a matrix with the inverse transpositions applied to the rows. |
|
*/ |
|
template<typename OtherDerived> |
|
const Product<Transpose, OtherDerived, AliasFreeProduct> |
|
operator*(const MatrixBase<OtherDerived>& matrix) const |
|
{ |
|
return Product<Transpose, OtherDerived, AliasFreeProduct>(*this, matrix.derived()); |
|
} |
|
|
|
const TranspositionType& nestedExpression() const { return m_transpositions; } |
|
|
|
protected: |
|
const TranspositionType& m_transpositions; |
|
}; |
|
|
|
} // end namespace Eigen |
|
|
|
#endif // EIGEN_TRANSPOSITIONS_H
|
|
|