地面站终端 App
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2488 lines
93 KiB

/*===================================================================
======================================================================*/
/**
* @file
* @brief Represents one unmanned aerial vehicle
*
* @author Lorenz Meier <mavteam@student.ethz.ch>
*
*/
#include <QList>
#include <QMessageBox>
#include <QTimer>
#include <QSettings>
#include <iostream>
#include <QDebug>
#include <cmath>
#include <qmath.h>
#include "UAS.h"
#include "LinkInterface.h"
#include "UASManager.h"
#include "QGC.h"
#include "GAudioOutput.h"
#include "MAVLinkProtocol.h"
#include "QGCMAVLink.h"
#include "LinkManager.h"
#include "SerialLink.h"
UAS::UAS(MAVLinkProtocol* protocol, int id) : UASInterface(),
uasId(id),
startTime(QGC::groundTimeMilliseconds()),
commStatus(COMM_DISCONNECTED),
name(""),
autopilot(-1),
links(new QList<LinkInterface*>()),
unknownPackets(),
mavlink(protocol),
waypointManager(*this),
thrustSum(0),
thrustMax(10),
startVoltage(0),
warnVoltage(9.5f),
warnLevelPercent(20.0f),
currentVoltage(12.0f),
lpVoltage(12.0f),
batteryRemainingEstimateEnabled(false),
mode(-1),
status(-1),
navMode(-1),
onboardTimeOffset(0),
controlRollManual(true),
controlPitchManual(true),
controlYawManual(true),
controlThrustManual(true),
manualRollAngle(0),
manualPitchAngle(0),
manualYawAngle(0),
manualThrust(0),
receiveDropRate(0),
sendDropRate(0),
lowBattAlarm(false),
positionLock(false),
localX(0.0),
localY(0.0),
localZ(0.0),
latitude(0.0),
longitude(0.0),
altitude(0.0),
roll(0.0),
pitch(0.0),
yaw(0.0),
statusTimeout(new QTimer(this)),
paramsOnceRequested(false),
airframe(0),
attitudeKnown(false),
paramManager(NULL),
attitudeStamped(false),
lastAttitude(0),
simulation(new QGCFlightGearLink(this))
{
color = UASInterface::getNextColor();
setBattery(LIPOLY, 3);
connect(statusTimeout, SIGNAL(timeout()), this, SLOT(updateState()));
connect(this, SIGNAL(systemSpecsChanged(int)), this, SLOT(writeSettings()));
statusTimeout->start(500);
readSettings();
}
UAS::~UAS()
{
writeSettings();
delete links;
links=NULL;
}
void UAS::writeSettings()
{
QSettings settings;
settings.beginGroup(QString("MAV%1").arg(uasId));
settings.setValue("NAME", this->name);
settings.setValue("AIRFRAME", this->airframe);
settings.setValue("AP_TYPE", this->autopilot);
settings.setValue("BATTERY_SPECS", getBatterySpecs());
settings.endGroup();
settings.sync();
}
void UAS::readSettings()
{
QSettings settings;
settings.beginGroup(QString("MAV%1").arg(uasId));
this->name = settings.value("NAME", this->name).toString();
this->airframe = settings.value("AIRFRAME", this->airframe).toInt();
this->autopilot = settings.value("AP_TYPE", this->autopilot).toInt();
if (settings.contains("BATTERY_SPECS")) {
setBatterySpecs(settings.value("BATTERY_SPECS").toString());
}
settings.endGroup();
}
int UAS::getUASID() const
{
return uasId;
}
void UAS::updateState()
{
// Check if heartbeat timed out
quint64 heartbeatInterval = QGC::groundTimeUsecs() - lastHeartbeat;
if (heartbeatInterval > timeoutIntervalHeartbeat)
{
emit heartbeatTimeout(heartbeatInterval);
emit heartbeatTimeout();
}
// Position lock is set by the MAVLink message handler
// if no position lock is available, indicate an error
if (positionLock)
{
positionLock = false;
}
else
{
if (((mode&MAV_MODE_FLAG_DECODE_POSITION_AUTO) || (mode&MAV_MODE_FLAG_DECODE_POSITION_GUIDED)) && positionLock)
{
GAudioOutput::instance()->notifyNegative();
}
}
}
void UAS::setSelected()
{
if (UASManager::instance()->getActiveUAS() != this) {
UASManager::instance()->setActiveUAS(this);
emit systemSelected(true);
}
}
bool UAS::getSelected() const
{
return (UASManager::instance()->getActiveUAS() == this);
}
void UAS::receiveMessageNamedValue(const mavlink_message_t& message)
{
if (message.msgid == MAVLINK_MSG_ID_NAMED_VALUE_FLOAT)
{
mavlink_named_value_float_t val;
mavlink_msg_named_value_float_decode(&message, &val);
QByteArray bytes(val.name, MAVLINK_MSG_NAMED_VALUE_FLOAT_FIELD_NAME_LEN);
emit valueChanged(this->getUASID(), QString(bytes), tr("raw"), val.value, getUnixTime());
}
else if (message.msgid == MAVLINK_MSG_ID_NAMED_VALUE_INT)
{
mavlink_named_value_int_t val;
mavlink_msg_named_value_int_decode(&message, &val);
QByteArray bytes(val.name, MAVLINK_MSG_NAMED_VALUE_INT_FIELD_NAME_LEN);
emit valueChanged(this->getUASID(), QString(bytes), tr("raw"), val.value, getUnixTime());
}
}
void UAS::receiveMessage(LinkInterface* link, mavlink_message_t message)
{
if (!link) return;
if (!links->contains(link))
{
addLink(link);
// qDebug() << __FILE__ << __LINE__ << "ADDED LINK!" << link->getName();
}
// else
// {
// qDebug() << __FILE__ << __LINE__ << "DID NOT ADD LINK" << link->getName() << "ALREADY IN LIST";
// }
// qDebug() << "UAS RECEIVED from" << message.sysid << "component" << message.compid << "msg id" << message.msgid << "seq no" << message.seq;
// Only accept messages from this system (condition 1)
// and only then if a) attitudeStamped is disabled OR b) attitudeStamped is enabled
// and we already got one attitude packet
if (message.sysid == uasId && (!attitudeStamped || (attitudeStamped && (lastAttitude != 0)) || message.msgid == MAVLINK_MSG_ID_ATTITUDE))
{
QString uasState;
QString stateDescription;
switch (message.msgid)
{
case MAVLINK_MSG_ID_HEARTBEAT:
{
lastHeartbeat = QGC::groundTimeUsecs();
emit heartbeat(this);
mavlink_heartbeat_t state;
mavlink_msg_heartbeat_decode(&message, &state);
// Set new type if it has changed
if (this->type != state.type)
{
this->type = state.type;
if (airframe == 0)
{
switch (type)
{
case MAV_TYPE_FIXED_WING:
setAirframe(UASInterface::QGC_AIRFRAME_EASYSTAR);
break;
case MAV_TYPE_QUADROTOR:
setAirframe(UASInterface::QGC_AIRFRAME_CHEETAH);
break;
default:
// Do nothing
break;
}
}
this->autopilot = state.autopilot;
emit systemTypeSet(this, type);
}
QString audiostring = "System " + getUASName();
QString stateAudio = "";
QString modeAudio = "";
QString navModeAudio = "";
bool statechanged = false;
bool modechanged = false;
if (state.system_status != this->status)
{
statechanged = true;
this->status = state.system_status;
getStatusForCode((int)state.system_status, uasState, stateDescription);
emit statusChanged(this, uasState, stateDescription);
emit statusChanged(this->status);
shortStateText = uasState;
stateAudio = tr(" changed status to ") + uasState;
}
if (this->mode != static_cast<int>(state.base_mode))
{
modechanged = true;
this->mode = static_cast<int>(state.base_mode);
shortModeText = getShortModeTextFor(this->mode);
emit modeChanged(this->getUASID(), shortModeText, "");
modeAudio = " is now in " + shortModeText;
}
if (navMode != state.custom_mode)
{
emit navModeChanged(uasId, state.custom_mode, getNavModeText(state.custom_mode));
navMode = state.custom_mode;
navModeAudio = tr(" changed nav mode to ") + tr("FIXME");
}
// AUDIO
if (modechanged && statechanged)
{
// Output both messages
audiostring += modeAudio + " and " + stateAudio;
}
else if (modechanged || statechanged)
{
// Output the one message
audiostring += modeAudio + stateAudio + navModeAudio;
}
if ((int)state.system_status == (int)MAV_STATE_CRITICAL || state.system_status == (int)MAV_STATE_EMERGENCY)
{
GAudioOutput::instance()->startEmergency();
}
else if (modechanged || statechanged)
{
GAudioOutput::instance()->stopEmergency();
GAudioOutput::instance()->say(audiostring.toLower());
}
if (state.system_status == MAV_STATE_POWEROFF)
{
emit systemRemoved(this);
emit systemRemoved();
}
}
break;
case MAVLINK_MSG_ID_NAMED_VALUE_FLOAT:
case MAVLINK_MSG_ID_NAMED_VALUE_INT:
// Receive named value message
receiveMessageNamedValue(message);
break;
case MAVLINK_MSG_ID_SYS_STATUS:
{
mavlink_sys_status_t state;
mavlink_msg_sys_status_decode(&message, &state);
emit loadChanged(this,state.load/10.0f);
// FIXME REMOVE LATER emit valueChanged(uasId, "Load", "%", ((float)state.load)/10.0f, getUnixTime());
currentVoltage = state.voltage_battery/1000.0f;
lpVoltage = filterVoltage(currentVoltage);
if (startVoltage == 0) startVoltage = currentVoltage;
timeRemaining = calculateTimeRemaining();
if (!batteryRemainingEstimateEnabled && chargeLevel != -1)
{
chargeLevel = state.battery_remaining;
}
//qDebug() << "Voltage: " << currentVoltage << " Chargelevel: " << getChargeLevel() << " Time remaining " << timeRemaining;
emit batteryChanged(this, lpVoltage, getChargeLevel(), timeRemaining);
emit voltageChanged(message.sysid, state.voltage_battery/1000);
// LOW BATTERY ALARM
if (lpVoltage < warnVoltage)
{
startLowBattAlarm();
}
else
{
stopLowBattAlarm();
}
// COMMUNICATIONS DROP RATE
// FIXME
emit dropRateChanged(this->getUASID(), state.drop_rate_comm/10000.0f);
}
break;
case MAVLINK_MSG_ID_RAW_IMU:
{
//mavlink_raw_imu_t raw;
//mavlink_msg_raw_imu_decode(&message, &raw);
//quint64 time = getUnixTime(raw.time_usec);
// FIXME REMOVE LATER emit valueChanged(uasId, "accel x", "raw", static_cast<double>(raw.xacc), time);
// FIXME REMOVE LATER emit valueChanged(uasId, "accel y", "raw", static_cast<double>(raw.yacc), time);
// FIXME REMOVE LATER emit valueChanged(uasId, "accel z", "raw", static_cast<double>(raw.zacc), time);
// FIXME REMOVE LATER emit valueChanged(uasId, "gyro roll", "raw", static_cast<double>(raw.xgyro), time);
// FIXME REMOVE LATER emit valueChanged(uasId, "gyro pitch", "raw", static_cast<double>(raw.ygyro), time);
// FIXME REMOVE LATER emit valueChanged(uasId, "gyro yaw", "raw", static_cast<double>(raw.zgyro), time);
// FIXME REMOVE LATER emit valueChanged(uasId, "mag x", "raw", static_cast<double>(raw.xmag), time);
// FIXME REMOVE LATER emit valueChanged(uasId, "mag y", "raw", static_cast<double>(raw.ymag), time);
// FIXME REMOVE LATER emit valueChanged(uasId, "mag z", "raw", static_cast<double>(raw.zmag), time);
}
break;
case MAVLINK_MSG_ID_SCALED_IMU:
{
//mavlink_scaled_imu_t scaled;
//mavlink_msg_scaled_imu_decode(&message, &scaled);
//quint64 time = getUnixTime(scaled.time_boot_ms);
// FIXME REMOVE LATER emit valueChanged(uasId, "accel x", "g", scaled.xacc/1000.0f, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "accel y", "g", scaled.yacc/1000.0f, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "accel z", "g", scaled.zacc/1000.0f, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "gyro roll", "rad/s", scaled.xgyro/1000.0f, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "gyro pitch", "rad/s", scaled.ygyro/1000.0f, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "gyro yaw", "rad/s", scaled.zgyro/1000.0f, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "mag x", "uTesla", scaled.xmag/100.0f, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "mag y", "uTesla", scaled.ymag/100.0f, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "mag z", "uTesla", scaled.zmag/100.0f, time);
}
break;
case MAVLINK_MSG_ID_ATTITUDE:
{
mavlink_attitude_t attitude;
mavlink_msg_attitude_decode(&message, &attitude);
quint64 time = getUnixReferenceTime(attitude.time_boot_ms);
lastAttitude = time;
roll = QGC::limitAngleToPMPIf(attitude.roll);
pitch = QGC::limitAngleToPMPIf(attitude.pitch);
yaw = QGC::limitAngleToPMPIf(attitude.yaw);
// FIXME REMOVE LATER emit valueChanged(uasId, "roll", "rad", roll, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "pitch", "rad", pitch, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "yaw", "rad", yaw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "rollspeed", "rad/s", attitude.rollspeed, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "pitchspeed", "rad/s", attitude.pitchspeed, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "yawspeed", "rad/s", attitude.yawspeed, time);
// Emit in angles
// Convert yaw angle to compass value
// in 0 - 360 deg range
float compass = (yaw/M_PI)*180.0+360.0f;
while (compass > 360.0f) {
compass -= 360.0f;
}
attitudeKnown = true;
// FIXME REMOVE LATER emit valueChanged(uasId, "roll deg", "deg", (roll/M_PI)*180.0, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "pitch deg", "deg", (pitch/M_PI)*180.0, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "heading deg", "deg", compass, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "rollspeed d/s", "deg/s", (attitude.rollspeed/M_PI)*180.0, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "pitchspeed d/s", "deg/s", (attitude.pitchspeed/M_PI)*180.0, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "yawspeed d/s", "deg/s", (attitude.yawspeed/M_PI)*180.0, time);
emit attitudeChanged(this, roll, pitch, yaw, time);
emit attitudeSpeedChanged(uasId, attitude.rollspeed, attitude.pitchspeed, attitude.yawspeed, time);
}
break;
case MAVLINK_MSG_ID_HIL_CONTROLS:
{
mavlink_hil_controls_t hil;
mavlink_msg_hil_controls_decode(&message, &hil);
emit hilControlsChanged(hil.time_usec, hil.roll_ailerons, hil.pitch_elevator, hil.yaw_rudder, hil.throttle, hil.mode, hil.nav_mode);
}
break;
case MAVLINK_MSG_ID_VFR_HUD:
{
mavlink_vfr_hud_t hud;
mavlink_msg_vfr_hud_decode(&message, &hud);
quint64 time = getUnixTime();
// Display updated values
// FIXME REMOVE LATER emit valueChanged(uasId, "airspeed", "m/s", hud.airspeed, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "groundspeed", "m/s", hud.groundspeed, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "altitude", "m", hud.alt, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "heading", "deg", hud.heading, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "climbrate", "m/s", hud.climb, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "throttle", "%", hud.throttle, time);
emit thrustChanged(this, hud.throttle/100.0);
if (!attitudeKnown)
{
yaw = QGC::limitAngleToPMPId((((double)hud.heading-180.0)/360.0)*M_PI);
emit attitudeChanged(this, roll, pitch, yaw, time);
}
emit altitudeChanged(uasId, hud.alt);
//yaw = (hud.heading-180.0f/360.0f)*M_PI;
emit speedChanged(this, hud.airspeed, 0.0f, hud.climb, time);
}
break;
case MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT:
{
//mavlink_nav_controller_output_t nav;
//mavlink_msg_nav_controller_output_decode(&message, &nav);
//quint64 time = getUnixTime();
// Update UI
// FIXME REMOVE LATER emit valueChanged(uasId, "nav roll", "deg", nav.nav_roll, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "nav pitch", "deg", nav.nav_pitch, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "nav bearing", "deg", nav.nav_bearing, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "target bearing", "deg", nav.target_bearing, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "wp dist", "m", nav.wp_dist, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "alt err", "m", nav.alt_error, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "airspeed err", "m/s", nav.alt_error, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "xtrack err", "m", nav.xtrack_error, time);
}
break;
case MAVLINK_MSG_ID_LOCAL_POSITION_NED:
//std::cerr << std::endl;
//std::cerr << "Decoded attitude message:" << " roll: " << std::dec << mavlink_msg_attitude_get_roll(message.payload) << " pitch: " << mavlink_msg_attitude_get_pitch(message.payload) << " yaw: " << mavlink_msg_attitude_get_yaw(message.payload) << std::endl;
{
mavlink_local_position_ned_t pos;
mavlink_msg_local_position_ned_decode(&message, &pos);
quint64 time = getUnixTime(pos.time_boot_ms);
localX = pos.x;
localY = pos.y;
localZ = pos.z;
// FIXME REMOVE LATER emit valueChanged(uasId, "x", "m", pos.x, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "y", "m", pos.y, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "z", "m", pos.z, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "x speed", "m/s", pos.vx, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "y speed", "m/s", pos.vy, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "z speed", "m/s", pos.vz, time);
emit localPositionChanged(this, pos.x, pos.y, pos.z, time);
emit speedChanged(this, pos.vx, pos.vy, pos.vz, time);
// qDebug()<<"Local Position = "<<pos.x<<" - "<<pos.y<<" - "<<pos.z;
// qDebug()<<"Speed Local Position = "<<pos.vx<<" - "<<pos.vy<<" - "<<pos.vz;
//emit attitudeChanged(this, pos.roll, pos.pitch, pos.yaw, time);
// Set internal state
if (!positionLock) {
// If position was not locked before, notify positive
GAudioOutput::instance()->notifyPositive();
}
positionLock = true;
}
break;
case MAVLINK_MSG_ID_GLOBAL_POSITION_INT:
//std::cerr << std::endl;
//std::cerr << "Decoded attitude message:" << " roll: " << std::dec << mavlink_msg_attitude_get_roll(message.payload) << " pitch: " << mavlink_msg_attitude_get_pitch(message.payload) << " yaw: " << mavlink_msg_attitude_get_yaw(message.payload) << std::endl;
{
mavlink_global_position_int_t pos;
mavlink_msg_global_position_int_decode(&message, &pos);
quint64 time = getUnixTime();
latitude = pos.lat/(double)1E7;
longitude = pos.lon/(double)1E7;
altitude = pos.alt/1000.0;
speedX = pos.vx/100.0;
speedY = pos.vy/100.0;
speedZ = pos.vz/100.0;
// FIXME REMOVE LATER emit valueChanged(uasId, "latitude", "deg", latitude, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "longitude", "deg", longitude, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "altitude", "m", altitude, time);
// double totalSpeed = sqrt(speedX*speedX + speedY*speedY + speedZ*speedZ);
// FIXME REMOVE LATER emit valueChanged(uasId, "gps speed", "m/s", totalSpeed, time);
emit globalPositionChanged(this, latitude, longitude, altitude, time);
emit speedChanged(this, speedX, speedY, speedZ, time);
// Set internal state
if (!positionLock) {
// If position was not locked before, notify positive
GAudioOutput::instance()->notifyPositive();
}
positionLock = true;
//TODO fix this hack for forwarding of global position for patch antenna tracking
forwardMessage(message);
}
break;
case MAVLINK_MSG_ID_GPS_RAW_INT:
{
mavlink_gps_raw_int_t pos;
mavlink_msg_gps_raw_int_decode(&message, &pos);
// SANITY CHECK
// only accept values in a realistic range
// quint64 time = getUnixTime(pos.time_usec);
quint64 time = getUnixTime(pos.time_usec);
// FIXME REMOVE LATER emit valueChanged(uasId, "gps latitude", "deg", pos.lat/(double)1E7, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "gps longitude", "deg", pos.lon/(double)1E7, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "gps speed", "m/s", pos.vel, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "gps eph", "m", pos.eph/(double)1E2, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "gps epv", "m", pos.eph/(double)1E2, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "gps fix", "raw", pos.fix_type, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "gps course", "raw", pos.cog, time);
if (pos.fix_type > 2) {
emit globalPositionChanged(this, pos.lat/(double)1E7, pos.lon/(double)1E7, pos.alt/1000.0, time);
latitude = pos.lat/(double)1E7;
longitude = pos.lon/(double)1E7;
altitude = pos.alt/1000.0;
positionLock = true;
// Check for NaN
int alt = pos.alt;
if (alt != alt) {
alt = 0;
emit textMessageReceived(uasId, message.compid, 255, "GCS ERROR: RECEIVED NaN FOR ALTITUDE");
}
// FIXME REMOVE LATER emit valueChanged(uasId, "altitude", "m", pos.alt/(double)1E3, time);
// Smaller than threshold and not NaN
float vel = pos.vel/100.0f;
if (vel < 1000000 && !isnan(vel) && !isinf(vel)) {
// FIXME REMOVE LATER emit valueChanged(uasId, "speed", "m/s", vel, time);
//qDebug() << "GOT GPS RAW";
// emit speedChanged(this, (double)pos.v, 0.0, 0.0, time);
} else {
emit textMessageReceived(uasId, message.compid, 255, QString("GCS ERROR: RECEIVED INVALID SPEED OF %1 m/s").arg(vel));
}
}
}
break;
case MAVLINK_MSG_ID_GPS_STATUS:
{
mavlink_gps_status_t pos;
mavlink_msg_gps_status_decode(&message, &pos);
for(int i = 0; i < (int)pos.satellites_visible; i++)
{
emit gpsSatelliteStatusChanged(uasId, (unsigned char)pos.satellite_prn[i], (unsigned char)pos.satellite_elevation[i], (unsigned char)pos.satellite_azimuth[i], (unsigned char)pos.satellite_snr[i], static_cast<bool>(pos.satellite_used[i]));
}
}
break;
case MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN:
{
mavlink_gps_global_origin_t pos;
mavlink_msg_gps_global_origin_decode(&message, &pos);
emit homePositionChanged(uasId, pos.latitude, pos.longitude, pos.altitude);
}
break;
case MAVLINK_MSG_ID_RAW_PRESSURE:
{
//mavlink_raw_pressure_t pressure;
//mavlink_msg_raw_pressure_decode(&message, &pressure);
//quint64 time = this->getUnixTime(pressure.time_usec);
// FIXME REMOVE LATER emit valueChanged(uasId, "abs pressure", "raw", pressure.press_abs, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "diff pressure 1", "raw", pressure.press_diff1, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "diff pressure 2", "raw", pressure.press_diff2, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "temperature", "raw", pressure.temperature, time);
}
break;
case MAVLINK_MSG_ID_SCALED_PRESSURE:
{
//mavlink_scaled_pressure_t pressure;
//mavlink_msg_scaled_pressure_decode(&message, &pressure);
//quint64 time = this->getUnixTime(pressure.time_boot_ms);
// FIXME REMOVE LATER emit valueChanged(uasId, "abs pressure", "hPa", pressure.press_abs, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "diff pressure", "hPa", pressure.press_diff, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "temperature", "C", pressure.temperature/100.0, time);
}
break;
case MAVLINK_MSG_ID_RC_CHANNELS_RAW:
{
mavlink_rc_channels_raw_t channels;
mavlink_msg_rc_channels_raw_decode(&message, &channels);
emit remoteControlRSSIChanged(channels.rssi/255.0f);
emit remoteControlChannelRawChanged(0, channels.chan1_raw);
emit remoteControlChannelRawChanged(1, channels.chan2_raw);
emit remoteControlChannelRawChanged(2, channels.chan3_raw);
emit remoteControlChannelRawChanged(3, channels.chan4_raw);
emit remoteControlChannelRawChanged(4, channels.chan5_raw);
emit remoteControlChannelRawChanged(5, channels.chan6_raw);
emit remoteControlChannelRawChanged(6, channels.chan7_raw);
emit remoteControlChannelRawChanged(7, channels.chan8_raw);
// quint64 time = getUnixTime();
// FIXME REMOVE LATER emit valueChanged(uasId, "rc in #1", "us", channels.chan1_raw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "rc in #2", "us", channels.chan2_raw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "rc in #3", "us", channels.chan3_raw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "rc in #4", "us", channels.chan4_raw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "rc in #5", "us", channels.chan5_raw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "rc in #6", "us", channels.chan6_raw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "rc in #7", "us", channels.chan7_raw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "rc in #8", "us", channels.chan8_raw, time);
}
break;
case MAVLINK_MSG_ID_RC_CHANNELS_SCALED:
{
mavlink_rc_channels_scaled_t channels;
mavlink_msg_rc_channels_scaled_decode(&message, &channels);
emit remoteControlRSSIChanged(channels.rssi/255.0f);
emit remoteControlChannelScaledChanged(0, channels.chan1_scaled/10000.0f);
emit remoteControlChannelScaledChanged(1, channels.chan2_scaled/10000.0f);
emit remoteControlChannelScaledChanged(2, channels.chan3_scaled/10000.0f);
emit remoteControlChannelScaledChanged(3, channels.chan4_scaled/10000.0f);
emit remoteControlChannelScaledChanged(4, channels.chan5_scaled/10000.0f);
emit remoteControlChannelScaledChanged(5, channels.chan6_scaled/10000.0f);
emit remoteControlChannelScaledChanged(6, channels.chan7_scaled/10000.0f);
emit remoteControlChannelScaledChanged(7, channels.chan8_scaled/10000.0f);
}
break;
case MAVLINK_MSG_ID_PARAM_VALUE:
{
mavlink_param_value_t value;
mavlink_msg_param_value_decode(&message, &value);
QByteArray bytes((char*)value.param_id, MAVLINK_MSG_PARAM_VALUE_FIELD_PARAM_ID_LEN);
QString parameterName = QString(bytes);
int component = message.compid;
mavlink_param_union_t val;
val.param_float = value.param_value;
val.type = value.param_type;
// Insert component if necessary
if (!parameters.contains(component))
{
parameters.insert(component, new QMap<QString, QVariant>());
}
// Insert parameter into registry
if (parameters.value(component)->contains(parameterName)) parameters.value(component)->remove(parameterName);
// Insert with correct type
switch (value.param_type)
{
case MAVLINK_TYPE_FLOAT:
{
// Variant
QVariant param(val.param_float);
parameters.value(component)->insert(parameterName, param);
// Emit change
emit parameterChanged(uasId, message.compid, parameterName, param);
emit parameterChanged(uasId, message.compid, value.param_count, value.param_index, parameterName, param);
qDebug() << "RECEIVED PARAM:" << param;
}
break;
case MAVLINK_TYPE_UINT32_T:
{
// Variant
QVariant param(val.param_uint32);
parameters.value(component)->insert(parameterName, param);
// Emit change
emit parameterChanged(uasId, message.compid, parameterName, param);
emit parameterChanged(uasId, message.compid, value.param_count, value.param_index, parameterName, param);
qDebug() << "RECEIVED PARAM:" << param;
}
break;
case MAVLINK_TYPE_INT32_T:
{
// Variant
QVariant param(val.param_int32);
parameters.value(component)->insert(parameterName, param);
// Emit change
emit parameterChanged(uasId, message.compid, parameterName, param);
emit parameterChanged(uasId, message.compid, value.param_count, value.param_index, parameterName, param);
qDebug() << "RECEIVED PARAM:" << param;
}
break;
default:
qCritical() << "INVALID DATA TYPE USED AS PARAMETER VALUE: " << value.param_type;
}
}
break;
case MAVLINK_MSG_ID_COMMAND_ACK:
mavlink_command_ack_t ack;
mavlink_msg_command_ack_decode(&message, &ack);
if (ack.result == 1)
{
emit textMessageReceived(uasId, message.compid, 0, tr("SUCCESS: Executed CMD: %1").arg(ack.command));
}
else
{
emit textMessageReceived(uasId, message.compid, 0, tr("FAILURE: Rejected CMD: %1").arg(ack.command));
}
break;
case MAVLINK_MSG_ID_DEBUG:
// FIXME REMOVE LATER emit valueChanged(uasId, QString("debug ") + QString::number(mavlink_msg_debug_get_ind(&message)), "raw", mavlink_msg_debug_get_value(&message), MG::TIME::getGroundTimeNow());
break;
case MAVLINK_MSG_ID_ROLL_PITCH_YAW_THRUST_SETPOINT:
{
mavlink_roll_pitch_yaw_thrust_setpoint_t out;
mavlink_msg_roll_pitch_yaw_thrust_setpoint_decode(&message, &out);
quint64 time = getUnixTimeFromMs(out.time_boot_ms);
emit attitudeThrustSetPointChanged(this, out.roll, out.pitch, out.yaw, out.thrust, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "att control roll", "rad", out.roll, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "att control pitch", "rad", out.pitch, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "att control yaw", "rad", out.yaw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "att control thrust", "0-1", out.thrust, time);
}
break;
case MAVLINK_MSG_ID_MISSION_COUNT:
{
mavlink_mission_count_t wpc;
mavlink_msg_mission_count_decode(&message, &wpc);
if (wpc.target_system == mavlink->getSystemId() && wpc.target_component == mavlink->getComponentId())
{
waypointManager.handleWaypointCount(message.sysid, message.compid, wpc.count);
}
else
{
qDebug() << "Got waypoint message, but was not for me";
}
}
break;
case MAVLINK_MSG_ID_MISSION_ITEM:
{
mavlink_mission_item_t wp;
mavlink_msg_mission_item_decode(&message, &wp);
//qDebug() << "got waypoint (" << wp.seq << ") from ID " << message.sysid << " x=" << wp.x << " y=" << wp.y << " z=" << wp.z;
if(wp.target_system == mavlink->getSystemId() && wp.target_component == mavlink->getComponentId())
{
waypointManager.handleWaypoint(message.sysid, message.compid, &wp);
}
else
{
qDebug() << "Got waypoint message, but was not for me";
}
}
break;
case MAVLINK_MSG_ID_MISSION_ACK:
{
mavlink_mission_ack_t wpa;
mavlink_msg_mission_ack_decode(&message, &wpa);
if(wpa.target_system == mavlink->getSystemId() && wpa.target_component == mavlink->getComponentId())
{
waypointManager.handleWaypointAck(message.sysid, message.compid, &wpa);
}
}
break;
case MAVLINK_MSG_ID_MISSION_REQUEST:
{
mavlink_mission_request_t wpr;
mavlink_msg_mission_request_decode(&message, &wpr);
if(wpr.target_system == mavlink->getSystemId() && wpr.target_component == mavlink->getComponentId())
{
waypointManager.handleWaypointRequest(message.sysid, message.compid, &wpr);
}
else
{
qDebug() << "Got waypoint message, but was not for me";
}
}
break;
case MAVLINK_MSG_ID_MISSION_ITEM_REACHED:
{
mavlink_mission_item_reached_t wpr;
mavlink_msg_mission_item_reached_decode(&message, &wpr);
waypointManager.handleWaypointReached(message.sysid, message.compid, &wpr);
QString text = QString("System %1 reached waypoint %2").arg(getUASName()).arg(wpr.seq);
GAudioOutput::instance()->say(text);
emit textMessageReceived(message.sysid, message.compid, 0, text);
}
break;
case MAVLINK_MSG_ID_MISSION_CURRENT:
{
mavlink_mission_current_t wpc;
mavlink_msg_mission_current_decode(&message, &wpc);
waypointManager.handleWaypointCurrent(message.sysid, message.compid, &wpc);
}
break;
case MAVLINK_MSG_ID_LOCAL_POSITION_SETPOINT:
{
mavlink_local_position_setpoint_t p;
mavlink_msg_local_position_setpoint_decode(&message, &p);
emit positionSetPointsChanged(uasId, p.x, p.y, p.z, p.yaw, QGC::groundTimeUsecs());
}
break;
case MAVLINK_MSG_ID_SERVO_OUTPUT_RAW:
{
//mavlink_servo_output_raw_t servos;
//mavlink_msg_servo_output_raw_decode(&message, &servos);
//quint64 time = getUnixTime();
// FIXME REMOVE LATER emit valueChanged(uasId, "servo #1", "us", servos.servo1_raw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "servo #2", "us", servos.servo2_raw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "servo #3", "us", servos.servo3_raw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "servo #4", "us", servos.servo4_raw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "servo #5", "us", servos.servo5_raw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "servo #6", "us", servos.servo6_raw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "servo #7", "us", servos.servo7_raw, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "servo #8", "us", servos.servo8_raw, time);
}
break;
case MAVLINK_MSG_ID_OPTICAL_FLOW:
{
//mavlink_optical_flow_t flow;
//mavlink_msg_optical_flow_decode(&message, &flow);
//quint64 time = getUnixTime(flow.time_usec);
// FIXME REMOVE LATER emit valueChanged(uasId, QString("opt_flow_%1.x").arg(flow.sensor_id), "Pixel", flow.flow_x, time);
// FIXME REMOVE LATER emit valueChanged(uasId, QString("opt_flow_%1.y").arg(flow.sensor_id), "Pixel", flow.flow_y, time);
// FIXME REMOVE LATER emit valueChanged(uasId, QString("opt_flow_%1.qual").arg(flow.sensor_id), "0-255", flow.quality, time);
// FIXME REMOVE LATER emit valueChanged(uasId, QString("opt_flow_%1.dist").arg(flow.sensor_id), "m", flow.ground_distance, time);
}
break;
case MAVLINK_MSG_ID_STATUSTEXT:
{
QByteArray b;
b.resize(MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN);
mavlink_msg_statustext_get_text(&message, b.data());
//b.append('\0');
QString text = QString(b);
int severity = mavlink_msg_statustext_get_severity(&message);
//qDebug() << "RECEIVED STATUS:" << text;false
//emit statusTextReceived(severity, text);
emit textMessageReceived(uasId, message.compid, severity, text);
}
break;
#ifdef MAVLINK_ENABLED_PIXHAWK
case MAVLINK_MSG_ID_DATA_TRANSMISSION_HANDSHAKE:
{
qDebug() << "RECIEVED ACK TO GET IMAGE";
mavlink_data_transmission_handshake_t p;
mavlink_msg_data_transmission_handshake_decode(&message, &p);
imageSize = p.size;
imagePackets = p.packets;
imagePayload = p.payload;
imageQuality = p.jpg_quality;
imageType = p.type;
imageStart = QGC::groundTimeMilliseconds();
}
break;
case MAVLINK_MSG_ID_ENCAPSULATED_DATA:
{
mavlink_encapsulated_data_t img;
mavlink_msg_encapsulated_data_decode(&message, &img);
int seq = img.seqnr;
int pos = seq * imagePayload;
// Check if we have a valid transaction
if (imagePackets == 0)
{
// NO VALID TRANSACTION - ABORT
// Restart statemachine
imagePacketsArrived = 0;
}
for (int i = 0; i < imagePayload; ++i)
{
if (pos <= imageSize) {
imageRecBuffer[pos] = img.data[i];
}
++pos;
}
++imagePacketsArrived;
// emit signal if all packets arrived
if ((imagePacketsArrived >= imagePackets))
{
// Restart statemachine
imagePacketsArrived = 0;
emit imageReady(this);
qDebug() << "imageReady emitted. all packets arrived";
}
}
break;
#endif
case MAVLINK_MSG_ID_DEBUG_VECT:
{
//mavlink_debug_vect_t vect;
//mavlink_msg_debug_vect_decode(&message, &vect);
//QString str((const char*)vect.name);
//quint64 time = getUnixTime(vect.time_usec);
// FIXME REMOVE LATER emit valueChanged(uasId, str+".x", "raw", vect.x, time);
// FIXME REMOVE LATER emit valueChanged(uasId, str+".y", "raw", vect.y, time);
// FIXME REMOVE LATER emit valueChanged(uasId, str+".z", "raw", vect.z, time);
}
break;
// case MAVLINK_MSG_ID_OBJECT_DETECTION_EVENT:
// {
// mavlink_object_detection_event_t event;
// mavlink_msg_object_detection_event_decode(&message, &event);
// QString str(event.name);
// emit objectDetected(event.time, event.object_id, event.type, str, event.quality, event.bearing, event.distance);
// }
// break;
// WILL BE ENABLED ONCE MESSAGE IS IN COMMON MESSAGE SET
// case MAVLINK_MSG_ID_MEMORY_VECT:
// {
// mavlink_memory_vect_t vect;
// mavlink_msg_memory_vect_decode(&message, &vect);
// QString str("mem_%1");
// quint64 time = getUnixTime(0);
// int16_t *mem0 = (int16_t *)&vect.value[0];
// uint16_t *mem1 = (uint16_t *)&vect.value[0];
// int32_t *mem2 = (int32_t *)&vect.value[0];
// // uint32_t *mem3 = (uint32_t *)&vect.value[0]; causes overload problem
// float *mem4 = (float *)&vect.value[0];
// if ( vect.ver == 0) vect.type = 0, vect.ver = 1; else ;
// if ( vect.ver == 1)
// {
// switch (vect.type) {
// default:
// case 0:
// for (int i = 0; i < 16; i++)
// // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*2)), "i16", mem0[i], time);
// break;
// case 1:
// for (int i = 0; i < 16; i++)
// // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*2)), "ui16", mem1[i], time);
// break;
// case 2:
// for (int i = 0; i < 16; i++)
// // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*2)), "Q15", (float)mem0[i]/32767.0, time);
// break;
// case 3:
// for (int i = 0; i < 16; i++)
// // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*2)), "1Q14", (float)mem0[i]/16383.0, time);
// break;
// case 4:
// for (int i = 0; i < 8; i++)
// // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*4)), "i32", mem2[i], time);
// break;
// case 5:
// for (int i = 0; i < 8; i++)
// // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*4)), "i32", mem2[i], time);
// break;
// case 6:
// for (int i = 0; i < 8; i++)
// // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*4)), "float", mem4[i], time);
// break;
// }
// }
// }
// break;
#ifdef MAVLINK_ENABLED_UALBERTA
case MAVLINK_MSG_ID_NAV_FILTER_BIAS:
{
mavlink_nav_filter_bias_t bias;
mavlink_msg_nav_filter_bias_decode(&message, &bias);
quint64 time = getUnixTime();
// FIXME REMOVE LATER emit valueChanged(uasId, "b_f[0]", "raw", bias.accel_0, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "b_f[1]", "raw", bias.accel_1, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "b_f[2]", "raw", bias.accel_2, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "b_w[0]", "raw", bias.gyro_0, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "b_w[1]", "raw", bias.gyro_1, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "b_w[2]", "raw", bias.gyro_2, time);
}
break;
case MAVLINK_MSG_ID_RADIO_CALIBRATION:
{
mavlink_radio_calibration_t radioMsg;
mavlink_msg_radio_calibration_decode(&message, &radioMsg);
QVector<uint16_t> aileron;
QVector<uint16_t> elevator;
QVector<uint16_t> rudder;
QVector<uint16_t> gyro;
QVector<uint16_t> pitch;
QVector<uint16_t> throttle;
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_AILERON_LEN; ++i)
aileron << radioMsg.aileron[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_ELEVATOR_LEN; ++i)
elevator << radioMsg.elevator[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_RUDDER_LEN; ++i)
rudder << radioMsg.rudder[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_GYRO_LEN; ++i)
gyro << radioMsg.gyro[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_PITCH_LEN; ++i)
pitch << radioMsg.pitch[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_THROTTLE_LEN; ++i)
throttle << radioMsg.throttle[i];
QPointer<RadioCalibrationData> radioData = new RadioCalibrationData(aileron, elevator, rudder, gyro, pitch, throttle);
emit radioCalibrationReceived(radioData);
delete radioData;
}
break;
#endif
// Messages to ignore
case MAVLINK_MSG_ID_SET_LOCAL_POSITION_SETPOINT:
break;
default:
{
if (!unknownPackets.contains(message.msgid))
{
unknownPackets.append(message.msgid);
QString errString = tr("UNABLE TO DECODE MESSAGE NUMBER %1").arg(message.msgid);
GAudioOutput::instance()->say(errString+tr(", please check console for details."));
emit textMessageReceived(uasId, message.compid, 255, errString);
std::cout << "Unable to decode message from system " << std::dec << static_cast<int>(message.sysid) << " with message id:" << static_cast<int>(message.msgid) << std::endl;
//qDebug() << std::cerr << "Unable to decode message from system " << std::dec << static_cast<int>(message.acid) << " with message id:" << static_cast<int>(message.msgid) << std::endl;
}
}
break;
}
}
}
void UAS::setHomePosition(double lat, double lon, double alt)
{
QMessageBox msgBox;
msgBox.setIcon(QMessageBox::Warning);
msgBox.setText("Setting new World Coordinate Frame Origin");
msgBox.setInformativeText("Do you want to set a new origin? Waypoints defined in the local frame will be shifted in their physical location");
msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::Cancel);
msgBox.setDefaultButton(QMessageBox::Cancel);
int ret = msgBox.exec();
// Close the message box shortly after the click to prevent accidental clicks
QTimer::singleShot(5000, &msgBox, SLOT(reject()));
if (ret == QMessageBox::Yes)
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), 0, MAV_CMD_DO_SET_HOME, 1, 0, 0, 0, 0, lat, lon, alt);
// Send message twice to increase chance that it reaches its goal
sendMessage(msg);
// Wait 15 ms
QGC::SLEEP::usleep(15000);
// Send again
sendMessage(msg);
// Send new home position to UAS
mavlink_set_gps_global_origin_t home;
home.target_system = uasId;
home.latitude = lat*1E7;
home.longitude = lon*1E7;
home.altitude = alt*1000;
qDebug() << "lat:" << home.latitude << " lon:" << home.longitude;
mavlink_msg_set_gps_global_origin_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &home);
sendMessage(msg);
}
}
void UAS::setLocalOriginAtCurrentGPSPosition()
{
QMessageBox msgBox;
msgBox.setIcon(QMessageBox::Warning);
msgBox.setText("Setting new World Coordinate Frame Origin");
msgBox.setInformativeText("Do you want to set a new origin? Waypoints defined in the local frame will be shifted in their physical location");
msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::Cancel);
msgBox.setDefaultButton(QMessageBox::Cancel);
int ret = msgBox.exec();
// Close the message box shortly after the click to prevent accidental clicks
QTimer::singleShot(5000, &msgBox, SLOT(reject()));
if (ret == QMessageBox::Yes)
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), 0, MAV_CMD_DO_SET_HOME, 1, 1, 0, 0, 0, 0, 0, 0);
// Send message twice to increase chance that it reaches its goal
sendMessage(msg);
// Wait 15 ms
QGC::SLEEP::usleep(15000);
// Send again
sendMessage(msg);
}
}
void UAS::setLocalPositionSetpoint(float x, float y, float z, float yaw)
{
#ifdef MAVLINK_ENABLED_PIXHAWK
mavlink_message_t msg;
mavlink_msg_position_control_setpoint_set_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, 0, x, y, z, yaw);
sendMessage(msg);
#else
Q_UNUSED(x);
Q_UNUSED(y);
Q_UNUSED(z);
Q_UNUSED(yaw);
#endif
}
void UAS::setLocalPositionOffset(float x, float y, float z, float yaw)
{
#ifdef MAVLINK_ENABLED_PIXHAWK
mavlink_message_t msg;
mavlink_msg_position_control_offset_set_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, x, y, z, yaw);
sendMessage(msg);
#else
Q_UNUSED(x);
Q_UNUSED(y);
Q_UNUSED(z);
Q_UNUSED(yaw);
#endif
}
void UAS::startRadioControlCalibration()
{
mavlink_message_t msg;
// Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 0, 0, 0, 1);
sendMessage(msg);
}
void UAS::startDataRecording()
{
mavlink_message_t msg;
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_DO_CONTROL_VIDEO, 1, -1, -1, -1, 2);
sendMessage(msg);
}
void UAS::stopDataRecording()
{
mavlink_message_t msg;
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_DO_CONTROL_VIDEO, 1, -1, -1, -1, 0);
sendMessage(msg);
}
void UAS::startMagnetometerCalibration()
{
mavlink_message_t msg;
// Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 0, 1, 0, 0);
sendMessage(msg);
}
void UAS::startGyroscopeCalibration()
{
mavlink_message_t msg;
// Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 1, 0, 0, 0);
sendMessage(msg);
}
void UAS::startPressureCalibration()
{
mavlink_message_t msg;
// Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 0, 0, 1, 0);
sendMessage(msg);
}
quint64 UAS::getUnixReferenceTime(quint64 time)
{
// Same as getUnixTime, but does not react to attitudeStamped mode
if (time == 0)
{
// qDebug() << "XNEW time:" <<QGC::groundTimeMilliseconds();
return QGC::groundTimeMilliseconds();
}
// Check if time is smaller than 40 years,
// assuming no system without Unix timestamp
// runs longer than 40 years continuously without
// reboot. In worst case this will add/subtract the
// communication delay between GCS and MAV,
// it will never alter the timestamp in a safety
// critical way.
//
// Calculation:
// 40 years
// 365 days
// 24 hours
// 60 minutes
// 60 seconds
// 1000 milliseconds
// 1000 microseconds
#ifndef _MSC_VER
else if (time < 1261440000000000LLU)
#else
else if (time < 1261440000000000)
#endif
{
// qDebug() << "GEN time:" << time/1000 + onboardTimeOffset;
if (onboardTimeOffset == 0)
{
onboardTimeOffset = QGC::groundTimeMilliseconds() - time/1000;
}
return time/1000 + onboardTimeOffset;
}
else
{
// Time is not zero and larger than 40 years -> has to be
// a Unix epoch timestamp. Do nothing.
return time/1000;
}
}
/**
* @warning If attitudeStamped is enabled, this function will not actually return the precise time stamp
* of this measurement augmented to UNIX time, but will MOVE the timestamp IN TIME to match
* the last measured attitude. There is no reason why one would want this, except for
* system setups where the onboard clock is not present or broken and datasets should
* be collected that are still roughly synchronized. PLEASE NOTE THAT ENABLING ATTITUDE STAMPED
* RUINS THE SCIENTIFIC NATURE OF THE CORRECT LOGGING FUNCTIONS OF QGROUNDCONTROL!
*/
quint64 UAS::getUnixTimeFromMs(quint64 time)
{
return getUnixTime(time*1000);
}
/**
* @warning If attitudeStamped is enabled, this function will not actually return the precise time stamp
* of this measurement augmented to UNIX time, but will MOVE the timestamp IN TIME to match
* the last measured attitude. There is no reason why one would want this, except for
* system setups where the onboard clock is not present or broken and datasets should
* be collected that are still roughly synchronized. PLEASE NOTE THAT ENABLING ATTITUDE STAMPED
* RUINS THE SCIENTIFIC NATURE OF THE CORRECT LOGGING FUNCTIONS OF QGROUNDCONTROL!
*/
quint64 UAS::getUnixTime(quint64 time)
{
quint64 ret = 0;
if (attitudeStamped)
{
ret = lastAttitude;
}
if (time == 0)
{
ret = QGC::groundTimeMilliseconds();
}
// Check if time is smaller than 40 years,
// assuming no system without Unix timestamp
// runs longer than 40 years continuously without
// reboot. In worst case this will add/subtract the
// communication delay between GCS and MAV,
// it will never alter the timestamp in a safety
// critical way.
//
// Calculation:
// 40 years
// 365 days
// 24 hours
// 60 minutes
// 60 seconds
// 1000 milliseconds
// 1000 microseconds
#ifndef _MSC_VER
else if (time < 1261440000000000LLU)
#else
else if (time < 1261440000000000)
#endif
{
// qDebug() << "GEN time:" << time/1000 + onboardTimeOffset;
if (onboardTimeOffset == 0)
{
onboardTimeOffset = QGC::groundTimeMilliseconds() - time/1000;
}
ret = time/1000 + onboardTimeOffset;
}
else
{
// Time is not zero and larger than 40 years -> has to be
// a Unix epoch timestamp. Do nothing.
ret = time/1000;
}
return ret;
}
QList<QString> UAS::getParameterNames(int component)
{
if (parameters.contains(component))
{
return parameters.value(component)->keys();
}
else
{
return QList<QString>();
}
}
QList<int> UAS::getComponentIds()
{
return parameters.keys();
}
void UAS::setMode(int mode)
{
if (mode >= (int)MAV_MODE_PREFLIGHT && mode < (int)MAV_MODE_ENUM_END)
{
//this->mode = mode; //no call assignament, update receive message from UAS
mavlink_message_t msg;
mavlink_msg_set_mode_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, (uint8_t)uasId, (uint8_t)mode, (uint16_t)navMode);
sendMessage(msg);
qDebug() << "SENDING REQUEST TO SET MODE TO SYSTEM" << uasId << ", REQUEST TO SET MODE " << (uint8_t)mode;
}
else
{
qDebug() << "uas Mode not assign: " << mode;
}
}
void UAS::sendMessage(mavlink_message_t message)
{
// Emit message on all links that are currently connected
foreach (LinkInterface* link, *links)
{
if (link)
{
sendMessage(link, message);
}
else
{
// Remove from list
links->removeAt(links->indexOf(link));
}
}
}
void UAS::forwardMessage(mavlink_message_t message)
{
// Emit message on all links that are currently connected
QList<LinkInterface*>link_list = LinkManager::instance()->getLinksForProtocol(mavlink);
foreach(LinkInterface* link, link_list)
{
if (link)
{
SerialLink* serial = dynamic_cast<SerialLink*>(link);
if(serial != 0)
{
for(int i=0; i<links->size(); i++)
{
if(serial != links->at(i))
{
qDebug()<<"Antenna tracking: Forwarding Over link: "<<serial->getName()<<" "<<serial;
sendMessage(serial, message);
}
}
}
}
}
}
void UAS::sendMessage(LinkInterface* link, mavlink_message_t message)
{
if(!link) return;
// Create buffer
uint8_t buffer[MAVLINK_MAX_PACKET_LEN];
// Write message into buffer, prepending start sign
int len = mavlink_msg_to_send_buffer(buffer, &message);
static uint8_t messageKeys[256] = MAVLINK_MESSAGE_CRCS;
mavlink_finalize_message_chan(&message, mavlink->getSystemId(), mavlink->getComponentId(), link->getId(), message.len, messageKeys[message.msgid]);
// If link is connected
if (link->isConnected())
{
// Send the portion of the buffer now occupied by the message
link->writeBytes((const char*)buffer, len);
}
}
/**
* @param value battery voltage
*/
float UAS::filterVoltage(float value) const
{
return lpVoltage * 0.7f + value * 0.3f;
}
QString UAS::getNavModeText(int mode)
{
if (autopilot == MAV_AUTOPILOT_PIXHAWK)
{
switch (mode)
{
case 0:
return QString("PREFLIGHT");
break;
default:
return QString("UNKNOWN");
}
}
else if (autopilot == MAV_AUTOPILOT_ARDUPILOTMEGA)
{
return QString("UNKNOWN");
}
else if (autopilot == MAV_AUTOPILOT_OPENPILOT)
{
return QString("UNKNOWN");
}
// If nothing matches, return unknown
return QString("UNKNOWN");
}
void UAS::getStatusForCode(int statusCode, QString& uasState, QString& stateDescription)
{
switch (statusCode)
{
case MAV_STATE_UNINIT:
uasState = tr("UNINIT");
stateDescription = tr("Unitialized, booting up.");
break;
case MAV_STATE_BOOT:
uasState = tr("BOOT");
stateDescription = tr("Booting system, please wait.");
break;
case MAV_STATE_CALIBRATING:
uasState = tr("CALIBRATING");
stateDescription = tr("Calibrating sensors, please wait.");
break;
case MAV_STATE_ACTIVE:
uasState = tr("ACTIVE");
stateDescription = tr("Active, normal operation.");
break;
case MAV_STATE_STANDBY:
uasState = tr("STANDBY");
stateDescription = tr("Standby mode, ready for liftoff.");
break;
case MAV_STATE_CRITICAL:
uasState = tr("CRITICAL");
stateDescription = tr("FAILURE: Continuing operation.");
break;
case MAV_STATE_EMERGENCY:
uasState = tr("EMERGENCY");
stateDescription = tr("EMERGENCY: Land Immediately!");
break;
//case MAV_STATE_HILSIM:
//uasState = tr("HIL SIM");
//stateDescription = tr("HIL Simulation, Sensors read from SIM");
//break;
case MAV_STATE_POWEROFF:
uasState = tr("SHUTDOWN");
stateDescription = tr("Powering off system.");
break;
default:
uasState = tr("UNKNOWN");
stateDescription = tr("Unknown system state");
break;
}
}
QImage UAS::getImage()
{
#ifdef MAVLINK_ENABLED_PIXHAWK
qDebug() << "IMAGE TYPE:" << imageType;
// RAW greyscale
if (imageType == MAVLINK_DATA_STREAM_IMG_RAW8U)
{
// TODO FIXME Fabian
// RAW hardcoded to 22x22
int imgWidth = 22;
int imgHeight = 22;
int imgColors = 255;
//const int headerSize = 15;
// Construct PGM header
QString header("P5\n%1 %2\n%3\n");
header = header.arg(imgWidth).arg(imgHeight).arg(imgColors);
QByteArray tmpImage(header.toStdString().c_str(), header.toStdString().size());
tmpImage.append(imageRecBuffer);
//qDebug() << "IMAGE SIZE:" << tmpImage.size() << "HEADER SIZE: (15):" << header.size() << "HEADER: " << header;
if (imageRecBuffer.isNull())
{
qDebug()<< "could not convertToPGM()";
return QImage();
}
if (!image.loadFromData(tmpImage, "PGM"))
{
qDebug()<< "could not create extracted image";
return QImage();
}
}
// BMP with header
else if (imageType == MAVLINK_DATA_STREAM_IMG_BMP ||
imageType == MAVLINK_DATA_STREAM_IMG_JPEG ||
imageType == MAVLINK_DATA_STREAM_IMG_PGM ||
imageType == MAVLINK_DATA_STREAM_IMG_PNG)
{
if (!image.loadFromData(imageRecBuffer))
{
qDebug() << "Loading data from image buffer failed!";
}
}
// Restart statemachine
imagePacketsArrived = 0;
//imageRecBuffer.clear();
return image;
#else
return QImage();
#endif
}
void UAS::requestImage()
{
#ifdef MAVLINK_ENABLED_PIXHAWK
qDebug() << "trying to get an image from the uas...";
// check if there is already an image transmission going on
if (imagePacketsArrived == 0)
{
mavlink_message_t msg;
mavlink_msg_data_transmission_handshake_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, DATA_TYPE_JPEG_IMAGE, 0, 0, 0, 50);
sendMessage(msg);
}
#endif
}
/* MANAGEMENT */
/*
*
* @return The uptime in milliseconds
*
**/
quint64 UAS::getUptime() const
{
if(startTime == 0)
{
return 0;
}
else
{
return MG::TIME::getGroundTimeNow() - startTime;
}
}
int UAS::getCommunicationStatus() const
{
return commStatus;
}
void UAS::requestParameters()
{
mavlink_message_t msg;
mavlink_msg_param_request_list_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), 25);
sendMessage(msg);
}
void UAS::writeParametersToStorage()
{
mavlink_message_t msg;
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_PREFLIGHT_STORAGE, 1, 1, -1, -1, -1);
sendMessage(msg);
}
void UAS::readParametersFromStorage()
{
mavlink_message_t msg;
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_PREFLIGHT_STORAGE, 1, 0, -1, -1, -1);
sendMessage(msg);
}
void UAS::enableAllDataTransmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
// 0 is a magic ID and will enable/disable the standard message set except for heartbeat
stream.req_stream_id = MAV_DATA_STREAM_ALL;
// Select the update rate in Hz the message should be send
// All messages will be send with their default rate
// TODO: use 0 to turn off and get rid of enable/disable? will require
// a different magic flag for turning on defaults, possibly something really high like 1111 ?
stream.req_message_rate = 0;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
void UAS::enableRawSensorDataTransmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_RAW_SENSORS;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
void UAS::enableExtendedSystemStatusTransmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_EXTENDED_STATUS;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
void UAS::enableRCChannelDataTransmission(int rate)
{
#if defined(MAVLINK_ENABLED_UALBERTA_MESSAGES)
mavlink_message_t msg;
mavlink_msg_request_rc_channels_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, enabled);
sendMessage(msg);
#else
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_RC_CHANNELS;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
#endif
}
void UAS::enableRawControllerDataTransmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_RAW_CONTROLLER;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
//void UAS::enableRawSensorFusionTransmission(int rate)
//{
// // Buffers to write data to
// mavlink_message_t msg;
// mavlink_request_data_stream_t stream;
// // Select the message to request from now on
// stream.req_stream_id = MAV_DATA_STREAM_RAW_SENSOR_FUSION;
// // Select the update rate in Hz the message should be send
// stream.req_message_rate = rate;
// // Start / stop the message
// stream.start_stop = (rate) ? 1 : 0;
// // The system which should take this command
// stream.target_system = uasId;
// // The component / subsystem which should take this command
// stream.target_component = 0;
// // Encode and send the message
// mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// // Send message twice to increase chance of reception
// sendMessage(msg);
// sendMessage(msg);
//}
void UAS::enablePositionTransmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_POSITION;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
void UAS::enableExtra1Transmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_EXTRA1;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
void UAS::enableExtra2Transmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_EXTRA2;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
void UAS::enableExtra3Transmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_EXTRA3;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
/**
* Set a parameter value onboard
*
* @param component The component to set the parameter
* @param id Name of the parameter
* @param value Parameter value
*/
void UAS::setParameter(const int component, const QString& id, const QVariant& value)
{
if (!id.isNull())
{
mavlink_message_t msg;
mavlink_param_set_t p;
mavlink_param_union_t union_value;
// Assign correct value based on QVariant
switch (value.type())
{
case QVariant::Int:
union_value.param_int32 = value.toInt();
p.param_type = MAVLINK_TYPE_INT32_T;
break;
case QVariant::UInt:
union_value.param_uint32 = value.toUInt();
p.param_type = MAVLINK_TYPE_UINT32_T;
break;
case QMetaType::Float:
union_value.param_float = value.toFloat();
p.param_type = MAVLINK_TYPE_FLOAT;
break;
default:
qCritical() << "ABORTED PARAM SEND, NO VALID QVARIANT TYPE";
return;
}
p.param_value = union_value.param_float;
p.target_system = (uint8_t)uasId;
p.target_component = (uint8_t)component;
qDebug() << "SENT PARAM:" << value;
// Copy string into buffer, ensuring not to exceed the buffer size
for (unsigned int i = 0; i < sizeof(p.param_id); i++)
{
// String characters
if ((int)i < id.length() && i < (sizeof(p.param_id) - 1))
{
p.param_id[i] = id.toAscii()[i];
}
// // Null termination at end of string or end of buffer
// else if ((int)i == id.length() || i == (sizeof(p.param_id) - 1))
// {
// p.param_id[i] = '\0';
// }
// Zero fill
else
{
p.param_id[i] = 0;
}
}
mavlink_msg_param_set_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &p);
sendMessage(msg);
}
}
void UAS::requestParameter(int component, int parameter)
{
mavlink_message_t msg;
mavlink_param_request_read_t read;
read.param_index = parameter;
read.target_system = uasId;
read.target_component = component;
mavlink_msg_param_request_read_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &read);
sendMessage(msg);
qDebug() << __FILE__ << __LINE__ << "REQUESTING PARAM RETRANSMISSION FROM COMPONENT" << component << "FOR PARAM ID" << parameter;
}
void UAS::setSystemType(int systemType)
{
type = systemType;
// If the airframe is still generic, change it to a close default type
if (airframe == 0)
{
switch (systemType)
{
case MAV_TYPE_FIXED_WING:
airframe = QGC_AIRFRAME_EASYSTAR;
break;
case MAV_TYPE_QUADROTOR:
airframe = QGC_AIRFRAME_MIKROKOPTER;
break;
}
}
emit systemSpecsChanged(uasId);
}
void UAS::setUASName(const QString& name)
{
this->name = name;
writeSettings();
emit nameChanged(name);
emit systemSpecsChanged(uasId);
}
void UAS::executeCommand(MAV_CMD command)
{
mavlink_message_t msg;
mavlink_command_short_t cmd;
cmd.command = (uint8_t)command;
cmd.confirmation = 0;
cmd.param1 = 0.0f;
cmd.param2 = 0.0f;
cmd.param3 = 0.0f;
cmd.param4 = 0.0f;
cmd.target_system = uasId;
cmd.target_component = 0;
mavlink_msg_command_short_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &cmd);
sendMessage(msg);
}
void UAS::executeCommand(MAV_CMD command, int confirmation, float param1, float param2, float param3, float param4, int component)
{
mavlink_message_t msg;
mavlink_command_short_t cmd;
cmd.command = (uint8_t)command;
cmd.confirmation = confirmation;
cmd.param1 = param1;
cmd.param2 = param2;
cmd.param3 = param3;
cmd.param4 = param4;
cmd.target_system = uasId;
cmd.target_component = component;
mavlink_msg_command_short_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &cmd);
sendMessage(msg);
}
void UAS::executeCommand(MAV_CMD command, int confirmation, float param1, float param2, float param3, float param4, float param5, float param6, float param7, int component)
{
mavlink_message_t msg;
mavlink_command_long_t cmd;
cmd.command = (uint8_t)command;
cmd.confirmation = confirmation;
cmd.param1 = param1;
cmd.param2 = param2;
cmd.param3 = param3;
cmd.param4 = param4;
cmd.param5 = param5;
cmd.param6 = param6;
cmd.param7 = param7;
cmd.target_system = uasId;
cmd.target_component = component;
mavlink_msg_command_long_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &cmd);
sendMessage(msg);
}
/**
* Launches the system
*
**/
void UAS::launch()
{
// FIXME MAVLINKV10PORTINGNEEDED
// mavlink_message_t msg;
// // TODO Replace MG System ID with static function call and allow to change ID in GUI
// mavlink_msg_action_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), MAV_COMP_ID_IMU, (uint8_t)MAV_ACTION_TAKEOFF);
// // Send message twice to increase chance of reception
// sendMessage(msg);
// sendMessage(msg);
}
/**
* Depending on the UAS, this might make the rotors of a helicopter spinning
*
**/
void UAS::armSystem()
{
mavlink_message_t msg;
mavlink_msg_set_mode_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), mode, navMode | MAV_MODE_FLAG_SAFETY_ARMED);
sendMessage(msg);
}
/**
* @warning Depending on the UAS, this might completely stop all motors.
*
**/
void UAS::disarmSystem()
{
mavlink_message_t msg;
mavlink_msg_set_mode_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), mode, navMode & !MAV_MODE_FLAG_SAFETY_ARMED);
sendMessage(msg);
}
void UAS::setManualControlCommands(double roll, double pitch, double yaw, double thrust)
{
// Scale values
double rollPitchScaling = 0.2f;
double yawScaling = 0.5f;
double thrustScaling = 1.0f;
manualRollAngle = roll * rollPitchScaling;
manualPitchAngle = pitch * rollPitchScaling;
manualYawAngle = yaw * yawScaling;
manualThrust = thrust * thrustScaling;
if(mode == (int)MAV_MODE_MANUAL_ARMED)
{
mavlink_message_t message;
mavlink_msg_manual_control_pack(mavlink->getSystemId(), mavlink->getComponentId(), &message, this->uasId, (float)manualRollAngle, (float)manualPitchAngle, (float)manualYawAngle, (float)manualThrust, controlRollManual, controlPitchManual, controlYawManual, controlThrustManual);
sendMessage(message);
qDebug() << __FILE__ << __LINE__ << ": SENT MANUAL CONTROL MESSAGE: roll" << manualRollAngle << " pitch: " << manualPitchAngle << " yaw: " << manualYawAngle << " thrust: " << manualThrust;
emit attitudeThrustSetPointChanged(this, roll, pitch, yaw, thrust, MG::TIME::getGroundTimeNow());
}
else
{
qDebug() << "JOYSTICK/MANUAL CONTROL: IGNORING COMMANDS: Set mode to MANUAL to send joystick commands first";
}
}
int UAS::getSystemType()
{
return this->type;
}
void UAS::receiveButton(int buttonIndex)
{
switch (buttonIndex)
{
case 0:
break;
case 1:
break;
default:
break;
}
// qDebug() << __FILE__ << __LINE__ << ": Received button clicked signal (button # is: " << buttonIndex << "), UNIMPLEMENTED IN MAVLINK!";
}
void UAS::halt()
{
// FIXME MAVLINKV10PORTINGNEEDED
// mavlink_message_t msg;
// // TODO Replace MG System ID with static function call and allow to change ID in GUI
// mavlink_msg_action_pack(MG::SYSTEM::ID, MG::SYSTEM::COMPID, &msg, this->getUASID(), MAV_COMP_ID_IMU, (int)MAV_ACTION_HALT);
// // Send message twice to increase chance of reception
// sendMessage(msg);
// sendMessage(msg);
}
void UAS::go()
{
// FIXME MAVLINKV10PORTINGNEEDED
// mavlink_message_t msg;
// // TODO Replace MG System ID with static function call and allow to change ID in GUI
// mavlink_msg_action_pack(MG::SYSTEM::ID, MG::SYSTEM::COMPID, &msg, this->getUASID(), MAV_COMP_ID_IMU, (int)MAV_ACTION_CONTINUE);
// // Send message twice to increase chance of reception
// sendMessage(msg);
// sendMessage(msg);
}
/** Order the robot to return home / to land on the runway **/
void UAS::home()
{
// FIXME MAVLINKV10PORTINGNEEDED
// mavlink_message_t msg;
// // TODO Replace MG System ID with static function call and allow to change ID in GUI
// mavlink_msg_action_pack(MG::SYSTEM::ID, MG::SYSTEM::COMPID, &msg, this->getUASID(), MAV_COMP_ID_IMU, (int)MAV_ACTION_RETURN);
// // Send message twice to increase chance of reception
// sendMessage(msg);
// sendMessage(msg);
}
/**
* The MAV starts the emergency landing procedure. The behaviour depends on the onboard implementation
* and might differ between systems.
*/
void UAS::emergencySTOP()
{
// mavlink_message_t msg;
// // TODO Replace MG System ID with static function call and allow to change ID in GUI
// // FIXME MAVLINKV10PORTINGNEEDED
// //mavlink_msg_action_pack(MG::SYSTEM::ID, MG::SYSTEM::COMPID, &msg, this->getUASID(), MAV_COMP_ID_IMU, (int)MAV_ACTION_EMCY_LAND);
// // Send message twice to increase chance of reception
// sendMessage(msg);
// sendMessage(msg);
}
/**
* Shut down this mav - All onboard systems are immediately shut down (e.g. the main power line is cut).
* @warning This might lead to a crash
*
* The command will not be executed until emergencyKILLConfirm is issues immediately afterwards
*/
bool UAS::emergencyKILL()
{
// FIXME MAVLINKV10PORTINGNEEDED
// bool result = false;
// QMessageBox msgBox;
// msgBox.setIcon(QMessageBox::Critical);
// msgBox.setText("EMERGENCY: KILL ALL MOTORS ON UAS");
// msgBox.setInformativeText("Do you want to cut power on all systems?");
// msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::Cancel);
// msgBox.setDefaultButton(QMessageBox::Cancel);
// int ret = msgBox.exec();
// // Close the message box shortly after the click to prevent accidental clicks
// QTimer::singleShot(5000, &msgBox, SLOT(reject()));
// if (ret == QMessageBox::Yes)
// {
// mavlink_message_t msg;
// // TODO Replace MG System ID with static function call and allow to change ID in GUI
// mavlink_msg_action_pack(MG::SYSTEM::ID, MG::SYSTEM::COMPID, &msg, this->getUASID(), MAV_COMP_ID_IMU, (int)MAV_ACTION_EMCY_KILL);
// // Send message twice to increase chance of reception
// sendMessage(msg);
// sendMessage(msg);
// result = true;
// }
// return result;
return false;
}
void UAS::enableHil(bool enable)
{
// Connect Flight Gear Link
if (enable)
{
startHil();
}
else
{
stopHil();
}
}
/**
* @param time_us Timestamp (microseconds since UNIX epoch or microseconds since system boot)
* @param roll Roll angle (rad)
* @param pitch Pitch angle (rad)
* @param yaw Yaw angle (rad)
* @param rollspeed Roll angular speed (rad/s)
* @param pitchspeed Pitch angular speed (rad/s)
* @param yawspeed Yaw angular speed (rad/s)
* @param lat Latitude, expressed as * 1E7
* @param lon Longitude, expressed as * 1E7
* @param alt Altitude in meters, expressed as * 1000 (millimeters)
* @param vx Ground X Speed (Latitude), expressed as m/s * 100
* @param vy Ground Y Speed (Longitude), expressed as m/s * 100
* @param vz Ground Z Speed (Altitude), expressed as m/s * 100
* @param xacc X acceleration (mg)
* @param yacc Y acceleration (mg)
* @param zacc Z acceleration (mg)
*/
void UAS::sendHilState(uint64_t time_us, float roll, float pitch, float yaw, float rollspeed,
float pitchspeed, float yawspeed, int32_t lat, int32_t lon, int32_t alt,
int16_t vx, int16_t vy, int16_t vz, int16_t xacc, int16_t yacc, int16_t zacc)
{
mavlink_message_t msg;
mavlink_msg_hil_state_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, time_us, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc);
sendMessage(msg);
}
void UAS::startHil()
{
// Connect Flight Gear Link
simulation->connectSimulation();
mavlink_message_t msg;
mavlink_msg_set_mode_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), mode, navMode | MAV_MODE_FLAG_HIL_ENABLED);
sendMessage(msg);
}
void UAS::stopHil()
{
simulation->disconnectSimulation();
mavlink_message_t msg;
mavlink_msg_set_mode_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), mode, navMode & !MAV_MODE_FLAG_HIL_ENABLED);
sendMessage(msg);
}
void UAS::shutdown()
{
// FIXME MAVLINKV10PORTINGNEEDED
// bool result = false;
// QMessageBox msgBox;
// msgBox.setIcon(QMessageBox::Critical);
// msgBox.setText("Shutting down the UAS");
// msgBox.setInformativeText("Do you want to shut down the onboard computer?");
// msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::Cancel);
// msgBox.setDefaultButton(QMessageBox::Cancel);
// int ret = msgBox.exec();
// // Close the message box shortly after the click to prevent accidental clicks
// QTimer::singleShot(5000, &msgBox, SLOT(reject()));
// if (ret == QMessageBox::Yes)
// {
// // If the active UAS is set, execute command
// mavlink_message_t msg;
// // TODO Replace MG System ID with static function call and allow to change ID in GUI
// mavlink_msg_action_pack(MG::SYSTEM::ID, MG::SYSTEM::COMPID, &msg, this->getUASID(), MAV_COMP_ID_IMU,(int)MAV_ACTION_SHUTDOWN);
// // Send message twice to increase chance of reception
// sendMessage(msg);
// sendMessage(msg);
// result = true;
// }
}
void UAS::setTargetPosition(float x, float y, float z, float yaw)
{
mavlink_message_t msg;
mavlink_msg_set_local_position_setpoint_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_FRAME_LOCAL_NED, x, y, z, yaw);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
/**
* @return The name of this system as string in human-readable form
*/
QString UAS::getUASName(void) const
{
QString result;
if (name == "")
{
result = tr("MAV ") + result.sprintf("%03d", getUASID());
}
else
{
result = name;
}
return result;
}
const QString& UAS::getShortState() const
{
return shortStateText;
}
QString UAS::getShortModeTextFor(int id)
{
QString mode;
switch (id) {
case (uint8_t)MAV_MODE_PREFLIGHT:
mode = "PREFLIGHT";
break;
case (uint8_t)MAV_MODE_MANUAL_ARMED:
mode = "A|MANUAL";
break;
case (uint8_t)MAV_MODE_MANUAL_DISARMED:
mode = "D|MANUAL";
break;
case (uint8_t)MAV_MODE_AUTO_ARMED:
mode = "A|AUTO";
break;
case (uint8_t)MAV_MODE_AUTO_DISARMED:
mode = "D|AUTO";
break;
case (uint8_t)MAV_MODE_GUIDED_ARMED:
mode = "A|GUIDED";
break;
case (uint8_t)MAV_MODE_GUIDED_DISARMED:
mode = "D|GUIDED";
break;
case (uint8_t)MAV_MODE_STABILIZE_ARMED:
mode = "A|STABILIZED";
break;
case (uint8_t)MAV_MODE_STABILIZE_DISARMED:
mode = "D|STABILIZED";
break;
case (uint8_t)MAV_MODE_TEST_ARMED:
mode = "A|TEST";
break;
case (uint8_t)MAV_MODE_TEST_DISARMED:
mode = "D|TEST";
break;
default:
mode = "UNKNOWN";
break;
}
return mode;
}
const QString& UAS::getShortMode() const
{
return shortModeText;
}
void UAS::addLink(LinkInterface* link)
{
if (!links->contains(link))
{
links->append(link);
connect(link, SIGNAL(destroyed(QObject*)), this, SLOT(removeLink(QObject*)));
}
}
void UAS::removeLink(QObject* object)
{
LinkInterface* link = dynamic_cast<LinkInterface*>(object);
if (link)
{
links->removeAt(links->indexOf(link));
}
}
/**
* @brief Get the links associated with this robot
*
**/
QList<LinkInterface*>* UAS::getLinks()
{
return links;
}
void UAS::setBattery(BatteryType type, int cells)
{
this->batteryType = type;
this->cells = cells;
switch (batteryType)
{
case NICD:
break;
case NIMH:
break;
case LIION:
break;
case LIPOLY:
fullVoltage = this->cells * UAS::lipoFull;
emptyVoltage = this->cells * UAS::lipoEmpty;
break;
case LIFE:
break;
case AGZN:
break;
}
}
void UAS::setBatterySpecs(const QString& specs)
{
if (specs.length() == 0 || specs.contains("%"))
{
batteryRemainingEstimateEnabled = false;
bool ok;
QString percent = specs;
percent = percent.remove("%");
float temp = percent.toFloat(&ok);
if (ok)
{
warnLevelPercent = temp;
}
else
{
emit textMessageReceived(0, 0, 0, "Could not set battery options, format is wrong");
}
}
else
{
batteryRemainingEstimateEnabled = true;
QString stringList = specs;
stringList = stringList.remove("V");
stringList = stringList.remove("v");
QStringList parts = stringList.split(",");
if (parts.length() == 3)
{
float temp;
bool ok;
// Get the empty voltage
temp = parts.at(0).toFloat(&ok);
if (ok) emptyVoltage = temp;
// Get the warning voltage
temp = parts.at(1).toFloat(&ok);
if (ok) warnVoltage = temp;
// Get the full voltage
temp = parts.at(2).toFloat(&ok);
if (ok) fullVoltage = temp;
}
else
{
emit textMessageReceived(0, 0, 0, "Could not set battery options, format is wrong");
}
}
}
QString UAS::getBatterySpecs()
{
if (batteryRemainingEstimateEnabled)
{
return QString("%1V,%2V,%3V").arg(emptyVoltage).arg(warnVoltage).arg(fullVoltage);
}
else
{
return QString("%1%").arg(warnLevelPercent);
}
}
int UAS::calculateTimeRemaining()
{
quint64 dt = MG::TIME::getGroundTimeNow() - startTime;
double seconds = dt / 1000.0f;
double voltDifference = startVoltage - currentVoltage;
if (voltDifference <= 0) voltDifference = 0.00000000001f;
double dischargePerSecond = voltDifference / seconds;
int remaining = static_cast<int>((currentVoltage - emptyVoltage) / dischargePerSecond);
// Can never be below 0
if (remaining < 0) remaining = 0;
return remaining;
}
/**
* @return charge level in percent - 0 - 100
*/
float UAS::getChargeLevel()
{
if (batteryRemainingEstimateEnabled)
{
if (lpVoltage < emptyVoltage)
{
chargeLevel = 0.0f;
}
else if (lpVoltage > fullVoltage)
{
chargeLevel = 100.0f;
}
else
{
chargeLevel = 100.0f * ((lpVoltage - emptyVoltage)/(fullVoltage - emptyVoltage));
}
}
return chargeLevel;
}
void UAS::startLowBattAlarm()
{
if (!lowBattAlarm)
{
GAudioOutput::instance()->alert(tr("system %1 has low battery").arg(getUASName()));
QTimer::singleShot(2500, GAudioOutput::instance(), SLOT(startEmergency()));
lowBattAlarm = true;
}
}
void UAS::stopLowBattAlarm()
{
if (lowBattAlarm)
{
GAudioOutput::instance()->stopEmergency();
lowBattAlarm = false;
}
}